Evaluates changes in pixel values over time using the Landsat-based detection of trends in disturbance and recovery (LandTrendr) method and generates a change analysis raster containing the model results.
Para obter informações sobre o algoritmo LandTrendr, consulte Como funciona Analisar Alterações Usando LandTrendr.
Anotação:
Esta função raster somente é suportada em conjunto com a função Detectar Alterações Usando Análise de Alteração. Use a camada de saída da função Análise LandTrendr como entrada para a função Detectar Alteração Usando Análise de Alteração. Para produzir uma saída do conjunto de dados raster, conecte a função Análise LandTrendr com a função Detectar Alteração Utilizando Análise de Alteração usando o Editor de Função, salve isso como um modelo de função raster e use-o como entrada para a ferramenta de geoprocessamento Gerar Raster da Função Raster.
Notas
Esta função raster pode ser usada somente como entrada para a função raster Detectar Alteração Usando Análise de Alteração. Para gerar uma saída de raster, conecte a função Análise LandTrendr à função Detectar Alteração Usando Análise de Alteração em um modelo de função do raster e use o modelo como entrada na ferramenta de geoprocessamento Gerar Raster da Função Raster. O resultado é um raster contendo informações sobre o momento em que os valores de pixel foram alterados.
This tool extracts changes in an observed feature, so the ideal input multidimensional imagery should capture a consistent observation throughout time and should not include atmospheric or sensor interference, clouds, or cloud shadow. The best practice is to use data that has been normalized and can be masked using a QA band—for example, Landsat Collection 1 Surface Reflectance products with a cloud mask.
The tool performs analysis on one image per year, and the number of yearly slices must be equal to or greater than the value specified in the Minimum Number of Observations parameter. It is recommended that you have at least six years of data.
If you have monthly, weekly, or daily data, it is recommended that you select several images from each year (preferably from the same season), remove clouds and cloud shadow, and combine the images to generate a single image that captures the observation well. If monthly, weekly, or daily data is provided as the input multidimensional raster, the tool will identify one slice for analysis based on the date closest to that provided in the Snapping Date parameter.
A feature in a landscape will often take time to recover from a nonpermanent change such as a forest fire or insect infestation. To control the rate of recovery recognized by the model, set the Recovery Threshold parameter. A distinct segment cannot have a recovery rate that is faster than 1/recovery threshold.
The recovery from a change in landscape can occur in the positive or negative direction. For example, when a landscape experiences forest loss, a time series of vegetation index values shows a drop in index values, and the recovery shows a gradual increase in vegetation index values, or a positive recovery trend. Specify the direction of recovery trend with the Recovery Has Increasing Trend parameter.
Parâmetros
Parâmetro | Descrição |
---|---|
Raster | A camada raster multidimensional de entrada do Landsat. |
Nome da Banda de Processamento | The image band name to use for segmenting the pixel value trajectories over time. Choose the band name that will best capture the changes in the feature you want to observe. |
Data de Ajuste | The date used to identify a slice for each year in the input multidimensional dataset. The slice with the date closest to the snapping date will be used. This parameter is required if the input dataset contains sub-yearly data. |
Número Máximo de Segmentos | The maximum number of segments to be fitted to the time series for each pixel. The default is 5. |
Excesso da Contagem de Vértice | The number of additional vertices beyond max_num_segments + 1 that can be used to fit the model during the initial stage of identifying vertices. Later in the modeling process, the number of additional vertices will be reduced to max_num_segments + 1. The default is 2. |
Limite de Spike | The threshold to use for dampening spikes or anomalies in the pixel value trajectory. The value must range between 0 and 1 in which 1 means no dampening. The default is 0.9. |
Limite de Recuperação | The recovery threshold value in years. If a segment has a recovery rate that is faster than 1/recovery threshold, the segment is discarded and not included in the time series model. The value must range between 0 and 1. The default is 0.25. |
Número mínimo de Observações | The minimum number of valid observations required to perform fitting. The number of years in the input multidimensional dataset must be equal to or greater than this value. The default is 6. |
Limite de Valor P | The p-value threshold for a model to be selected. After the vertices are detected in the initial stage of the model fitting, the tool will fit each segment and calculate the p-value to determine the significance of the model. On the next iteration, the model will decrease the number of segments by one and recalculate the p-value. This will continue and, if the p-value is smaller than the value specified in this parameter, the model will be selected and the tool will stop searching for a better model. If no such model is selected, the tool will select a model with a p-value smaller than the lowest p-value × best model proportion value. The default is 0.01. |
Melhor Proporção do Modelo | The best model proportion value. During the model selection process, the tool will calculate the p-value for each model and identify a model that has the most vertices while maintaining the smallest (most significant) p-value based on this proportion value. A value of 1 means the model has the lowest p-value but may not have a high number of vertices. The default is 1.25. |
Impedir Recuperação de Um Ano | Specifies whether segments that exhibit a one year recovery will be excluded.
|
A Recuperação Tem Tendência de Aumento | Specifies whether the recovery has an increasing (positive) trend.
|
Saída de Outras Bandas | Specifies whether other bands will be included in the results.
|