Clasificar píxeles con aprendizaje profundo

Clasificar píxeles con aprendizaje profundo La herramienta Clasificar píxeles con aprendizaje profundo ejecuta un modelo de aprendizaje profundo entrenado en una imagen de entrada para producir un ráster clasificado.

Nota:

This functionality is currently only supported in Map Viewer Classic. It will be available in a future release of Visor de mapas.

If you do not see this tool in Map Viewer Classic, contact your organization administrator. You may not have image analysis privileges, available with the ArcGIS Image for ArcGIS Online license.

Diagrama de flujo de trabajo

Flujo de trabajo de Clasificar píxeles con aprendizaje profundo

Ejemplo

Partiendo de una imagen de satélite multibanda, genere un ráster de cobertura de suelo utilizando un modelo de aprendizaje profundo entrenado.

Notas de uso

El modelo de aprendizaje profundo de entrada de esta herramienta debe ser un elemento de paquete de aprendizaje profundo (.dlpk) almacenado en su portal. Puede generar un elemento de .dlpk con la herramienta de geoprocesamiento Entrenar un modelo de aprendizaje profundo en ArcGIS Pro o la herramienta de análisis de ráster de API REST de ArcGIS.

El elemento de .dlpk de entrada debe incluir un archivo de definición de modelo de Esri (.emd). Consulte a continuación el archivo .emd de muestra.

{
    "Framework":"TensorFlow",
    "ModelConfiguration":"deeplab",

    "ModelFile":"\\Data\\ImgClassification\\TF\\froz_inf_graph.pb",
    "ModelType":"ImageClassification",
    "ExtractBands":[0,1,2],
    "ImageHeight":513,
    "ImageWidth":513,

    "Classes" : [
        {
            "Value":0,
            "Name":"Evergreen Forest",
            "Color":[0, 51, 0]
         },
         {
            "Value":1,
            "Name":"Grassland/Herbaceous",
            "Color":[241, 185, 137]
         },
         {
            "Value":2,
            "Name":"Bare Land",
            "Color":[236, 236, 0]
         },
         {
            "Value":3,
            "Name":"Open Water",
            "Color":[0, 0, 117]
         },
         {
            "Value":4,
            "Name":"Scrub/Shrub",
            "Color":[102, 102, 0]
         },
         {
            "Value":5,
            "Name":"Impervious Surface",
            "Color":[236, 236, 236]
         }
    ]
}

If Use current map extent is checked, only the pixels that are visible in the current map extent will be analyzed. If unchecked, the entire input imagery layer will be analyzed.

The parameters for this tool are listed in the following table:

ParámetroExplicación
Elegir la imagen utilizada para clasificar píxeles

La imagen de entrada que se clasificará.

Elegir el modelo de aprendizaje profundo utilizado para clasificar píxeles

El elemento del paquete de aprendizaje profundo de entrada (.dlpk).

El paquete de aprendizaje profundo contenía el archivo JSON de definición de modelo de Esri (.emd), el archivo de modelo binario de aprendizaje profundo y, opcionalmente, la función ráster de Python que se debe utilizar.

Especificar los argumentos del modelo de aprendizaje profundo

Los argumentos de función se definen en la función ráster de Python a la que el modelo de entrada hace referencia. Aquí es donde enumera los argumentos y parámetros de aprendizaje profundo adicionales para refinamiento, como un umbral de confianza para ajustar la sensibilidad.

La herramienta rellena los nombres de los argumentos a partir de la lectura del módulo de Python.

Modo de procesamiento

Especifica cómo se procesarán todos los elementos de ráster en un servicio de imágenes.

  • Procesar como imagen en mosaico: todos los elementos de ráster en el servicio de imágenes se unirán en mosaico y se procesarán. Esta es la opción predeterminada.
  • Procesar todos los elementos de ráster por separado: todos los elementos de ráster del servicio de imágenes se procesarán como imágenes separadas.
.

Nombre de capa de resultados

The name of the layer that will be created in My Content and added to the map. The default name is based on the tool name and the input layer name. If the layer already exists, you will be prompted to provide another name.

You can specify the name of a folder in My Content where the result will be saved using the Save result in drop-down box. If you have privileges to create both tiled and dynamic imagery layers, you can also specify which layer type you want to use for the output using the Save result as drop-down box.

Sugerencia:

Click Show Credits before you run your analysis to check how many credits will be consumed.

Entornos

Analysis environment settings are additional parameters that affect a tool's results. You can access the tool's analysis environment settings by clicking the gear icon Analysis Environments at the top of the tool pane.

This tool honors the following Analysis Environments:

  • Extent—Specifies the area to be used for analysis.
  • Cell size—The cell size to use in the output layer.
  • Recycle interval of processing workers—Defines how many image sections to process before restarting worker processes.
  • Parallel processing factor—Controls the raster processing CPU or GPU instances.
  • Number of retries on failures—Defines how many retries a worker process will attempt when there is random failure processing a job.

Herramientas y funciones ráster similares

Use la herramienta Clasificar píxeles con aprendizaje profundo para clasificar píxeles en una imagen. Existen otras herramientas que pueden resultar de utilidad para solucionar problemas similares.

Herramientas de análisis y funciones ráster de Map Viewer Classic

Utilice la herramienta Detectar objetos con aprendizaje profundo para detectar la ubicación objetos en una imagen. Utilice la herramienta Clasificar objetos con aprendizaje profundo para clasificar objetos en una imagen.

Utilice las funciones ráster Clasificar o MLClassify para otras opciones de clasificación.

Herramientas de análisis y funciones ráster de ArcGIS Pro

La herramienta de geoprocesamiento Clasificar píxeles con aprendizaje profundo está disponible en la caja de herramientas de Image Analyst. Otras herramientas del conjunto de herramientas Aprendizaje profundo realizan flujos de trabajo de aprendizaje profundo.

Recursos para desarrolladores de ArcGIS Enterprise

Si está trabajando en API REST de ArcGIS, utilice la operación Classify Pixels Using Deep Learning.

Si está trabajando en ArcGIS API for Python, realice tareas de aprendizaje profundo del sitio web de la API de Python para ArcGIS con el módulo arcgis.learn.