Syntax
- float/bool/string array[index]
- float/bool/string array[rowIndex, colIndex]
- float[]/bool[]/string[] array[indices]
- float[]/bool[]/string[] array[rowIndex, colIndices]
- float[]/bool[]/string[] array[rowIndices, colIndex]
- float[]/bool[]/string[] array[rowIndices, colIndices]
Parameters
- array—(float [], string[], bool[])Array for which an element or multiple elements are requested.
- index, rowIndex, colIndex—floatZero-based linear/row/column array of array element.
- indices, rowIndices, colIndices—(float[], bool[])Array containing zero-based linear/row/column indices of array elements or logical values indicating whether a specific index is included.
Returns
An array element of a new array.
Description
Indexing with index values
The index operator returns the array element at a specific zero-based index position:
array = [1,2,3,4]
array[ 0 ] 1
array[ 3 ] 4
or the element at a specific rowIndex (row index) and colIndex (column index):
array2d = [1,2,3;
4,5,6;
7,8,9]
array2d[ 1 , 1 ] 5
Indexing with index arrays
Further, array elements can be indexed by an array (indices, rowIndices, colIndices). In this case the index operator returns a new array. Its dimensions are prescribed by the dimensions of the indices array.
array[ [0,2] ] [1,3]
array[ [1,1] ] [2,2]
array[ 3:-1:1 ] [4,3,2]
array[ [0,1; [1,2;
2,3] ] 3,4]
array2d[ 1 , [0,2] ] [4,6]
array2d[ [0,0,1] , 2 ] [3;
3;
6]
array2d[ 0:2 , [0,2] ] [1,3;
4,6;
7,9]
Logical indexing
An indices array (indices, rowIndices, colIndices) can also be given by logical values indicating whether a specific index is included:
array[ [true,false,true] ] [1,3]
array[ array .> 2 ] [3,4]
array[ array .> 1 .&& array .<= 3 ] [2,3]
array2d[ [false,true,true], 0 ] [4;
7]
Invalid indexing
If an index is negative or greater than or equal to the number of elements or rows or columns respectively, a default value is returned. The default value is 0 for float arrays, false for bool arrays, and "" for string arrays.
array[ -1 ] 0
array[ [false,false,true,true,true] ] [3,4,0]
array2d[ [2,3], -1:1 ] [0,7,8;
0,0,0]
Linear indexing
If a 2d array is indexed in 1d, linear indexing is used. Indexing is performed row-wise starting with elements in the first row and continuing on successive rows.
array2d[ 3 ] 4
array2d[ 0 : size(array2d)-1 ] [0,1,2,3,4,5,6,7,8,9]
array2d[ [0; [1;
3; 4;
6] ] 7]
Similarly, if a 2d indices array is used for row/column indexing, indices in rowIndices or colIndices are interpreted in a row-wise manner.
array2d[ 0 , [0,1; [1,2,3,0]
2,3] ]
Logical indexing is always linear.
array[ [true,false; [1,3]
true,false] ]
Related
Examples
Recursive element selection
With the size function and index operator an array can be recursively parsed for a specific element value. In this example the index of the longest edge is retrieved from an array of edge lengths.
indexOfLargest(array) = indexOfLargest(array, 0, 0)
indexOfLargest(array, i, iLargest) =
case i == size(array) : iLargest
else :
case array[i] > array[iLargest] : indexOfLargest(array, i+1, i)
else : indexOfLargest(array, i+1, iLargest)
const edgeLengths = comp(e) { all : scope.sx }
indexOfLongestEdge = indexOfLargest(edgeLengths)
Lot --> comp(e) { indexOfLongestEdge : LongestEdge. }
Parsing text file
A text file containing a table is parsed and elements are indexed linearly.
// table
// a;b;c↵
// d;e;f↵
// g;h;i
const file = readTextFile("table.txt")
const cells = splitString(file, "$;|\n") // [a,b,c,d,e,f,g,h,i]
const columns = 3
const indexes = [0 : columns : size(cells)-1] // [0:3:6]
const firstCol = cells[indexes] // [a,d,g]
Read CSV table
A CSV file is read and elements are indexed using the 2d index operator.
const table = readStringTable("table.csv")
const firstCol = table[0 : nRows(table)-1, 0] // [a,d,g]
Indexing by 2D arrays
The result of the 1d index operator is an array that has the same dimensions as the indices array.
const a = ["_", "d", "i", "a", "g"]
const b = [1,0,0,0;
0,2,0,0;
0,0,3,0;
0,0,0,4]
const c = a[b]
// (4x4)
// d _ _ _
// _ i _ _
// _ _ a _
// _ _ _ g
Prime numbers
An implementation of the Sieve of Eratosthenes that uses indexing by boolean arrays.
findPrimes(max) =
case max <= 1 : floatArray
else : findPrimes(sqrt(max), [2 : max], floatArray)
findPrimes(limit, a, primes) =
case a[0] <= limit : findPrimes(limit, a[a .% a[0] .!= 0], [primes, a[0]])
else : [primes, a]
Lot --> print(findPrimes(20)) // (8)[2,3,5,7,11,13,17,19]