Классифицировать пикселы при помощи глубокого обучения (Map Viewer Classic)

Инструмент Классифицировать пикселы при помощи глубокого обучения запускает обученную модель глубокого обучения для входного изображения, чтобы получить классифицированный растр.

Примечание:

Теперь этот инструмент доступен в Map Viewer, современный инструмент для создания карт в ArcGIS Online. Чтобы узнать больше, см. раздел Классификация пикселов с использованием глубокого обучения (Map Viewer).

Если вы не видите этот инструмент в Map Viewer Classic, свяжитесь с администратором организации. Ваша учетная запись должна иметь тип пользователя Professional или Professional Plus и права на выполнение анализа изображений

Схема рабочего процесса

Рабочий процесс классификации пикселов при помощи глубокого обучения

Пример

Взяв многоканальный спутниковый снимок, создайте растр почвенно-растительного покрова, используя обученную модель глубокого обучения.

Примечания по использованию

Входная модель глубокого обучения для этого инструмента должна быть элементом пакета глубокого обучения (.dlpk), который хранится на вашем портале. Вы можете создать элемент .dlpk с помощью инструмента геообработки Тренировать модель глубокого обучения в ArcGIS Pro или ArcGIS REST API инструмент анализа растра.

Входной элемент .dlpk должен включить файл определения модели Esri (.emd). См. пример файла .emd ниже.

{
    "Framework":"TensorFlow",
    "ModelConfiguration":"deeplab",

    "ModelFile":"\\Data\\ImgClassification\\TF\\froz_inf_graph.pb",
    "ModelType":"ImageClassification",
    "ExtractBands":[0,1,2],
    "ImageHeight":513,
    "ImageWidth":513,

    "Classes" : [
        {
            "Value":0,
            "Name":"Evergreen Forest",
            "Color":[0, 51, 0]
         },
         {
            "Value":1,
            "Name":"Grassland/Herbaceous",
            "Color":[241, 185, 137]
         },
         {
            "Value":2,
            "Name":"Bare Land",
            "Color":[236, 236, 0]
         },
         {
            "Value":3,
            "Name":"Open Water",
            "Color":[0, 0, 117]
         },
         {
            "Value":4,
            "Name":"Scrub/Shrub",
            "Color":[102, 102, 0]
         },
         {
            "Value":5,
            "Name":"Impervious Surface",
            "Color":[236, 236, 236]
         }
    ]
}

Если отмечено Использовать текущий экстент карты, будут анализироваться только те пикселы, которые видны в текущем экстенте карты. Если этой отметки нет, будет проанализирован весь слой входных изображений.

Параметры этого инструмента перечислены в следующей таблице:

ПараметрОбъяснение
Выберите изображение для классификации пикселов

Входное изображение, которое будет классифицировано.

Выберите модель глубокого обучения для классификации пикселов

Элемент входных данных пакета глубокого обучения (.dlpk).

Пакет глубокого обучения включает JSON-файла определения модели Esri (.emd), двоичного файла модели глубокого обучения и, при необходимости, растровой функции Python.

Введите аргументы модели глубокого обучения

Аргументы функции задаются в растровой функции Python, на который ссылается входная модель. Там перечисляются дополнительные параметры глубокого обучения и аргументы для улучшения, например, порог достоверности для настройки чувствительности.

Названия аргументов заполняются инструментом при чтении модуля Python.

Режим обработки

Определяет, как будут обрабатываться элементы растров в сервисе изображений.

  • Обработать как мозаичное изображение – Все растровые элементы в сервисе изображений будут объединены в мозаику и обработаны. Используется по умолчанию.
  • Обработать все элементы растров по отдельности – Все растровые элементы в сервисе изображений будут обработаны как отдельные изображения.
.

Имя слоя результата

Имя слоя, который будет добавлен в Мои ресурсы и на карту. Имя слоя по умолчанию зависит от имени инструмента и имени входного слоя. Если имя слоя уже используется, появится запрос ввести новое имя.

Вы можете указать имя папки в Моих ресурсах, где будет сохранен результат, с помощью ниспадающего списка Сохранить результат в. При наличии прав на создание слоев листов изображений и слоев динамических изображений, также можно выбрать тип слоя для выходных данных, используя ниспадающий список Сохранить результат как.

Подсказка:

Щелкните Показать кредиты до запуска анализа, чтобы узнать, сколько сервисных кредитов будет потрачено.

Параметры среды

Параметры среды анализа - это дополнительные параметры, которые влияют на результаты работы инструмента. Вы можете получить доступ к настройкам среды анализа инструмента, щелкнув кнопку шестеренки сред анализа Analysis Environments в верхней части панели инструментов.

Этот инструмент поддерживает следующие Параметры среды анализа:

  • Выходная система координат - Задает систему координат выходного слоя.
  • Экстент - указывает область, которая будет использоваться для анализа.
  • Растр привязки - настраивает экстент выхода таким образом, чтобы он соответствовал выравниванию ячеек указанного растрового слоя привязки.
  • Размер ячейки - размер ячейки для использования в выходном слое.

Сходные инструменты и функции растра

Используйте инструмент Классифицировать пикселы при помощи глубокого обучения для классификации пикселов изображения. Другие инструменты могут применяться для решения похожих задач.

Инструменты анализа Map Viewer Classic и функции растра

Используйте инструмент Выявить объекты при помощи глубокого обучения для поиска объектов на снимке. Используйте инструмент Классифицировать объекты при помощи глубокого обучения для классификации объектов на изображении.

Используйте функции растра Классификация и Классификация ML для других опций классификации.

Инструменты анализа ArcGIS Pro и функции растра

Инструмент геообработки Классифицировать пикселы при помощи глубокого обучения находится в наборе инструментов Image Analyst. Другие инструменты из группы Глубокое обучение выполняют процессы глубокого обучения.

Ресурсы для разработчиков ArcGIS Enterprise

Если вы работаете в ArcGIS REST API, используйте операцию Classify Pixels Using Deep Learning.

Если вы работаете в ArcGIS API for Python, выполните задачи глубокого обучения веб-сайта ArcGIS for Python API с помощью модуля arcgis.learn.