処理中、Drone2Map では画像の GPS メタデータ、カメラ データベースのカメラ パラメーター、自動フィーチャ マッチングから取得したタイ ポイントを使ってシーンの 3D 座標を TIN 化します。 TIN 化したタイ ポイントの光線が単一の 3D 座標に収束するのが理想とされます。 しかし、再投影エラーと呼ばれる、TIN 化したポイントの位置が定まらないという問題が頻繁に発生します。
ポイントを TIN 化すると、再投影エラーを最小化するベスト フィット ソリューションを使うことで、バンドル調整プロセスによって推定 3D 座標を調整して 3D 座標の位置が最適化され、定義されたカメラ パラメーター範囲が維持されます。 ジオリファレンスされたイメージの精度とは独立した強力な相対精度と絶対精度がある、再構築されたシーンが生成されます。
ジオリファレンスされたイメージより高い絶対精度が求められるプロジェクトもあります。 精度を高めるため、プロジェクトにコントロールを追加できます。 コントロールは既知の x,y,z 地表座標を含むポイントを参照し、多くの場合、地上の調査から取得され、プロジェクトの絶対精度を上げるために使用されます。
コントロール ポイントによってバンドル調整プロセスに位置的な制限が加わり、ベスト フィット ソリューションがさらに最適化されます。 精度の高いコントロールがある場合でも、バンドル調整プロセスのベスト フィット ソリューションはカメラのパラメーターに従う必要があることを忘れないようにしてください。 コントロール ポイントの出力場所が収集された場所からずれる場合があります。 画像収集とコントロールの配置を適切に行うことでこうした不一致を最小限に抑えることができます。
画質
画像収集手法が未熟だと、コントロールの効果が弱まる誤差伝播が発生する可能性があります。 モデルの絶対精度は計測されたコントロールの精度と、ベスト フィット ソリューションでバンドル調整プロセスがどれだけエラーを最小化できるかに左右されます。 画像間の不十分なオーバーラップ、不鮮明な画像、一貫性のない照明や弱い照明、植生などがバンドル調整プロセスでエラーを引き起こす要因となります。 そのため、プロジェクトの絶対精度を最大限に高めるには適切な画像収集手法が必要となります。
注意:
- コントロールの精度は最終プロダクトの地上サンプル距離 (GSD) の 3 倍にすることが推奨されています。 ただし、一般的なドローンの画像の解像度は高いため、このガイドラインに従うのが難しい場合もあり、プロダクトの精度がコントロールより若干低くなります。
- モデルの絶対精度はコントロールの精度より高くすることはできません。 適切な画像収集技術を使ってコントロールを適切に配置すると、モデルの水平方向の絶対精度は通常
になり、垂直方向の絶対精度は1 – 3 x GSD
になります。1 - 4 x GSD
地上コントロール ポイントの分布
適切な画像収集手法に加え、プロジェクトのコントロールの量と分布がモデルの最終的な絶対精度に大きな影響を与えます。
コントロールを追加することで、バンドル調整プロセスをコントロールの計測済みの場所に制約します。 コントロール ポイントの中心から放射状に移動するほど精度が低下します。 三角形網でプロジェクト全体にコントロールを均等に分布することで、コントロール間の距離が縮まってモデル全体で精度のばらつきがなくなります。 道路の端沿いやコリドー沿いなど単一のラインにコントロールを配置することで、最終プロダクトの幾何補正が実現されます。
複数の画像でコントロール ポイントを増やすほど、結果も良くなります。 画像のオーバーラップが少なくなるプロジェクトの端にコントロールを配置しないことが推奨されています。 代わりに、端からプロジェクトの中心に向かってコントロールをオフセットしてオーバーラップを最大化します。
プロジェクトで使用するコントロール ポイントの数に特に決まりはありません。 ただし、コントロールの数が増えるとプロジェクトの絶対精度も向上し、
絶対精度が 1 - 3 x GSD に収束するため結果が少なくなります。
Drone2Map では、最低 5 ~ 10 個のコントロール ポイントを使用することをお勧めします。 密な植生や起伏があるテレイン、構造物などの複雑なジオメトリの数をバンドル調整プロセスで増やすほど、コントロールの密度を上げる必要が出てきます。注意:
- 処理に使用するために少なくとも 3 個のコントロール ポイントを追加する必要があります。 5 ~ 10 個のコントロール ポイントを含めることを推奨します。
- 植生や構造物などカメラの邪魔になる可能性があるフィーチャから離れた、地上レベルの平らな地形にコントロールを配置します。
- 最良の結果を得るために調査済みのコントロール ターゲットを使用します。 調査済みのコントロール ターゲットがない場合は、画像 (2 番目のコントロール ポイント) で判別可能なオブジェクトをコントロールとして使用できます。
処理設定
[画像の調整] 処理ステップの実行中に自動フィーチャ マッチングから取得したタイ ポイントを使用してシーンの 3D 座標を推定し、次にこれらの座標をバンドル調整プロセスで使用してモデルを最適化します。 プロダクトの絶対精度を最大限に高めるためには、タイ ポイントを構成する各キーポイントの精度をできるだけ高くすることが重要です。 キーポイントの精度を最大限に高めるには、[タイ ポイント オプション 画像の縮尺] を [1 x (元の画像サイズ)] に設定します。
注意:
- [初期の画像の縮尺] 設定の数値を大きくすると、プロダクトの精度が上がる一方で処理時間が長くなります。
タイ ポイントを構成するキーポイントの数に比例して、推定 3D 座標の精度が上がります。 [一致する近傍] 設定ではマッチングするキーポイントの検索に使う画像を指定します。 [調整の改善] オプションを有効にすると、最大数のタイ ポイントを生成することができます。
コントロールのリンク付け
プロジェクトにコントロールが組み込まれている場合は、画像リンク エディターを使って各画像内のコントロールの場所を手動で特定できます。 すべての画像でコントロールの位置を正確に取れるかどうかが最終プロダクトの絶対精度を左右します。 複数の画像とコントロールがあるプロジェクトでこれを行うのは簡単ではない場合もありますが、補助付きリンク 機能を使うことでスピーディにこの処理を進めることができます。
モデルの精度評価
バンドル ブロック調整プロセスではモデルをコントロールの位置に合わせようとします。 そのため、プロダクトの精度はコントロール ポイントで最も高くなっています。 コントロール ポイントの中心から外に向かって放射状に移動するほど精度が低下します。そのため、コントロール ポイントを絶対精度の目安として使用すると表面的な結果しか得られない場合があります。
各地上コントロール ポイントには、[コントロール マネージャー] ウィンドウ x (dX)、y (dY)、x (dZ) のメートル単位の正確な値が格納されています。 これらの値は、最初の位置からの地上コントロール ポイントのずれを表し、ブロック調整が実行された後に生成されます。 一般的には、ゼロにより近い値の方が、より正確と考えられます。 調整済みポイントの全体的な正確性は、プロジェクトの処理レポートに記載されている投影エラー値を使用して測定されます。 この値は、最初のポイントが調整済みポイントからどれだけずれているかをピクセル単位で表します。
個々の画像リンクの調整後にも、同様のずれの計測が再投影エラーの形で計算されます。 この値は、画像リンク ウィンドウで画像リンクをクリックすると表示されます。 これを計測値として使用して、画像リンクの配置の精度を微調整することができます。 ゼロよりはるかに高い値は、画像リンクが適切に配置されていないか、その画像内で調整することが困難であるため、削除する必要があることを示しています。 GCP とのベスト フィットを達成するために、調整の実行後は特定のリンクを削除する必要が生じる場合があるため、多数のリンクを配置することをお勧めします。
チェック ポイントを使うことでプロダクトの全体的な絶対精度を評価することができます。 チェック ポイントはコントロール ポイントと同じように収集されますが、ブロック調整プロセスには組みこまれません。 代わりに、コントロール ポイントは処理完了後にモデルの精度を独立して評価するために使用されます。
注意:
- コントロール ポイントと同じように、チェック ポイントもプロジェクト全体に分布させます。
- 使用するチェック ポイントの数が少なすぎると不正確な結果が生成されることがあります。
ソース
Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. "Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used." リモート センシング。 2018, 10, 1606.