Preparar clasificador de máxima verosimilitud (Spatial Analyst)

Disponible con una licencia de Spatial Analyst.

Resumen

Genera un archivo de definición de clasificador de Esri (.ecd) utilizando la definición de clasificación del Clasificador de máxima verosimilitud (MLC).

Uso

  • Para finalizar el proceso de clasificación de máxima verosimilitud, utilice el mismo ráster de entrada y el archivo .ecd de salida de esta herramienta con la herramienta Clasificar ráster.

  • El ráster de entrada puede ser cualquier ráster compatible con Esri, con cualquier profundidad de bits válida.

  • Para crear un dataset ráster segmentado, utilice la herramienta Segmentación (desplazamiento medio).

  • El Archivo de definición de clasificador de salida contiene estadísticas de atributo adecuadas para la herramienta Clasificación de máxima verosimilitud.

  • El parámetro Atributos de segmento solo está activo si una de las entradas de capa ráster es una imagen segmentada.

  • Los datos de muestra de entrenamiento se deben haber recopilado en varios momentos mediante el Administrador de muestras de entrenamiento. El valor de dimensión de cada muestra aparece en un campo de la clase de entidad de muestra de entrenamiento, que se especifica en el parámetro Campo de valor de dimensión.

Parámetros

EtiquetaExplicaciónTipo de datos
Ráster de entrada

El dataset ráster a clasificar.

Raster Layer; Mosaic Layer; Image Service; String
Archivo de definición de clasificador de salida

El archivo en formato JSON de salida que contendrá información de atributos, estadísticas, vectores de hiperplano y otra información requerida por el clasificador. Se creará un archivo .ecd.

File
Ráster de entrada adicional
(Opcional)

Incorpora datasets ráster auxiliares como, por ejemplo, imagen segmentada o DEM. Este parámetro es opcional.

Raster Layer; Mosaic Layer; Image Service; String
Atributos de segmento utilizados
(Opcional)

Especifica los atributos que se incluirán en la tabla de atributos asociada con el ráster de salida.

  • COLORLos valores de color RGB se derivarán del ráster de entrada segmento por segmento. Esto también se conoce como color de cromaticidad promedio.
  • MEANEl número digital (DN) medio se derivará de la imagen de píxeles opcional, por segmento.
  • STDLa desviación estándar se derivará de la imagen de píxeles opcional, por segmento.
  • COUNTEl número de píxeles que componen el segmento, por segmento.
  • COMPACTNESSEl grado de compactibilidad o circularidad de un segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un círculo.
  • RECTANGULARITYEl grado de rectangularidad del segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un rectángulo.
String
Campo de valor de dimensión
(Opcional)

Contiene valores de dimensión de la clase de entidad de muestra de entrenamiento de entrada.

Field

TrainMaximumLikelihoodClassifier(in_raster, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
NombreExplicaciónTipo de datos
in_raster

El dataset ráster a clasificar.

Raster Layer; Mosaic Layer; Image Service; String
out_classifier_definition

El archivo en formato JSON de salida que contendrá información de atributos, estadísticas, vectores de hiperplano y otra información requerida por el clasificador. Se creará un archivo .ecd.

File
in_additional_raster
(Opcional)

Incorpora datasets ráster auxiliares como, por ejemplo, imagen segmentada o DEM. Este parámetro es opcional.

Raster Layer; Mosaic Layer; Image Service; String
used_attributes
[used_attributes,...]
(Opcional)

Especifica los atributos que se incluirán en la tabla de atributos asociada con el ráster de salida.

  • COLORLos valores de color RGB se derivarán del ráster de entrada segmento por segmento. Esto también se conoce como color de cromaticidad promedio.
  • MEANEl número digital (DN) medio se derivará de la imagen de píxeles opcional, por segmento.
  • STDLa desviación estándar se derivará de la imagen de píxeles opcional, por segmento.
  • COUNTEl número de píxeles que componen el segmento, por segmento.
  • COMPACTNESSEl grado de compactibilidad o circularidad de un segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un círculo.
  • RECTANGULARITYEl grado de rectangularidad del segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un rectángulo.

Este parámetro solo está habilitado si la propiedad clave Segmentado se establece en verdadera en el ráster de entrada. Si la única entrada en la herramienta es una imagen segmentada, los atributos predeterminados son COLOR, COUNT, COMPACTNESS y RECTANGULARITY. Si se incluye un valor in_additional_raster como entrada junto a la imagen segmentada, también están disponibles los atributos MEAN y STD.

String
dimension_value_field
(Opcional)

Contiene valores de dimensión de la clase de entidad de muestra de entrenamiento de entrada.

Field

Temas relacionados