Calcular la insolación puede llevar mucho tiempo; los cálculos para un modelo digital de elevación (DEM) grande pueden tardar varias horas y para un DEM muy grande, incluso días. Puede realizar algunas series de pruebas con una resolución más gruesa o con un subconjunto de datos para asegurarse de que la configuración es correcta antes de almacenar una ejecución con los datos de resolución completa.
Los rásteres de radiación de salida siempre son del tipo punto flotante y poseen unidades de vatios hora por metro cuadrado (WH/m2). La salida de ráster de duración directa será un entero con unidades hora.
La latitud para el área del sitio (unidades: grados decimales, positiva para el hemisferio norte y negativa para el hemisferio sur) se utiliza en cálculos como la declinación solar y la posición solar.
El análisis se ha diseñado específicamente para escalas de paisaje local, por lo que generalmente es aceptable utilizar un valor de latitud para todo el DEM. Con datasets más grandes, tales como estados, países o continentes, los resultados de la insolación serán significativamente diferentes para las distintas latitudes (mayores a 1 grado). Para analizar regiones geográficas más amplias, se debe dividir el área de estudio en zonas con diferentes latitudes.
Para configuraciones de tiempo de varios días, el rango máximo de días es un total de un año (365 días o 366 días para los años bisiestos). Si el día de inicio es mayor que el día de fin, los cálculos de tiempo continuarán en el año siguiente.
Por ejemplo, [día de inicio, día de fin] = [365, 31] representa del 31 de diciembre al 31 de enero del año siguiente. Por ejemplo [1, 2], el tiempo se incluye para el primer día desde las 0:00 horas (1 de enero) a las 0:00 (2 de enero). El día de inicio y el día de fin no pueden ser iguales.
El valor del año para la configuración de la hora se utiliza para determinar un año bisiesto. No tiene ninguna otra influencia en el análisis de radiación solar, ya que los cálculos son una función del periodo de tiempo determinado por días julianos.
Para las configuraciones de tiempo dentro de un día, el rango máximo de tiempo es un día (24 horas). Los cálculos no se realizarán entre días (por ejemplo, desde las 12:00 p.m. a las 12:00 p.m. del día siguiente). La hora de inicio debe ser menor a la hora de finalización.
Para las configuraciones de hora en el día, las horas de inicio y finalización se muestran en hora solar (unidades: horas decimales). Utilice la ventana del cuadro de diálogo de conversión de hora para convertir la hora estándar local y la hora solar local (HMS). Cuando convierte la hora estándar local a la hora solar, el programa tiene en cuenta una ecuación de tiempo.
El uso de un factor z es esencial para corregir los cálculos si las unidades z de la superficie se expresan en unidades diferentes de las unidades x,y del suelo. Para obtener resultados exactos, las unidades z deben ser las mismas que las unidades x,y de terreno. Si las unidades no son las mismas, utilice un factor z para convertir las unidades z en unidades x,y. Por ejemplo, si las unidades x,y son metros y las unidades z son pies, es posible especificar un factor z de 0,3048 para convertir los pies a metros.
Se recomienda tener los datos en un sistema de coordenadas proyectadas con unidades de metros. Si ejecuta el análisis con un sistema de coordenadas esféricas, debe especificar un factor z apropiado para esa latitud. A continuación se muestra una lista de factores z apropiados para usar si las unidades x,y son grados decimales y las unidades z son metros:
Latitude Z-factor
0 0.00000898
10 0.00000912
20 0.00000956
30 0.00001036
40 0.00001171
50 0.00001395
60 0.00001792
70 0.00002619
80 0.00005156
La latitud para el área del sitio (unidades: grados decimales, positiva para el hemisferio norte y negativa para el hemisferio sur) se utiliza en cálculos como la declinación solar y la posición solar. Debido a que el análisis solar se ha diseñado para escalas de paisaje y escalas locales, es aceptable utilizar un valor de latitud para todo el DEM. Para regiones geográficas más amplias, se debe dividir el área de estudio en zonas con diferentes latitudes.
Para rásteres de superficie de entrada que contengan una referencia espacial, el valor medio de la latitud se calcula de manera automática; en caso contrario, la latitud es de 45 grados de forma predeterminada. Al utilizar una capa de entrada, se utiliza la referencia espacial del marco de datos.
El tamaño del cielo es la resolución de los rásteres de la cuenca visual, el mapa celeste y el mapa solar que se utilizan en los cálculos de la radiación (unidades: celdas por lado). Estas son representaciones del cielo del ráster hemisféricas, de visión ascendente, y no tienen un sistema de coordenadas geográficas. Estos rásteres son cuadrados (mismo número de filas que de columnas).
A continuación, se muestran los valores recomendados para el tamaño del cielo cuando se utiliza una configuración temporal de un año entero o de varios días:
- Para un intervalo de 1 día, utilice un tamaño de cielo de 1000 y superior.
- Para un intervalo de 0,25 días, utilice un tamaño de cielo de 2000 y superior.
- Para un intervalo de 0,1 horas, utilice un tamaño de cielo de 4000 y superior.
Al aumentar el tamaño del cielo aumenta la exactitud del cálculo, pero también aumenta considerablemente el tiempo de cálculo.
Cuando la configuración del intervalo de día es pequeña (por ejemplo, < 14 días), utilice un tamaño de cielo más grande. Durante el análisis, se utiliza el mapa del sol (determinado por el tamaño del cielo) para representar las posiciones del sol (recorridos) para periodos de tiempo particulares para calcular la radiación directa. Con intervalos de día más pequeños, si la resolución del tamaño del cielo no es suficientemente grande, los recorridos del sol podrían superponerse, dando como resultado valores de radiación cero o inferiores para ese recorrido. Aumentar la resolución proporciona un resultado más exacto.
El valor máximo de tamaño del cielo es 10.000. Un valor de 200 es el predeterminado y es suficiente para DEM completos con intervalos de día grandes (por ejemplo, > 14 días). Un valor de tamaño del cielo de 512 es suficiente para los cálculos en las ubicaciones de puntos donde el tiempo de cálculo es menos problemático. Con intervalos de día menores (por ejemplo, < 14 días), se recomienda utilizar valores más grandes. Por ejemplo, para calcular la insolación para una ubicación en el ecuador con un intervalo de día = 1, utilice un tamaño de cielo de 2.800 o superior.
Se recomiendan los intervalos de días mayores que 3, dado que los recorridos del sol dentro de tres días habitualmente se superponen, dependiendo del tamaño del cielo y de la época del año. Para cálculos de todo el año con intervalos mensuales, el intervalo de día está deshabilitado y el programa utiliza intervalos mensuales de calendario. El valor predeterminado es 14.
Debido a que el cálculo de la cuenca visual puede ser altamente intenso, los ángulos del horizonte solo se trazan para el número de direcciones de cálculo especificadas. Los valores válidos deben ser múltiplos de 8 (8, 16, 24, 32, etc.) Generalmente, un valor de 8 o 16 es adecuado para las áreas con una topografía suave, y un valor de 32 es el adecuado para una topografía compleja. El valor predeterminado es 32.
El número de direcciones de cálculo necesario está relacionado con la resolución del DEM de entrada. El terreno natural con una resolución de 30 metros es generalmente bastante suave, de forma que es suficiente un menor número de direcciones para la mayoría de las situaciones (16 o 32). Con DEM más finos y, en particular, con estructuras de construcción humana incorporadas en los DEM, es necesario aumentar el número de direcciones. Al incrementar el número de direcciones, se aumenta la exactitud, pero también el tiempo de cálculo.
El parámetro Crear salidas para cada intervalo permite contar con la flexibilidad para calcular la insolación integrada durante un período de tiempo especificado o la insolación para cada intervalo en una serie de tiempo. Por ejemplo, para el período de tiempo dentro del día con un intervalo de hora de uno, si se marca este parámetro se crearán valores de insolación cada hora; en caso contrario, se calculará la insolación integrada para todo el día.
El parámetro Crear salida para cada intervalo afecta al formato y al número de archivos de radiación de salida. Cuando esta opción está activada, el ráster de salida contiene varias bandas que corresponden a los valores de radiación o duración de cada intervalo de tiempo (intervalo de hora cuando la configuración de tiempo es inferior a un día o intervalo de día cuando son varios días).
La proporción difusa es la fracción del flujo de radiación normal global que es difusa. Los valores varían de 0 a 1. Este valor se debe establecer de acuerdo con las condiciones atmosféricas. Los valores típicos son 0,2 para las condiciones de cielo muy despejado y 0,3 para las condiciones de cielo despejado en general.
La cantidad de radiación solar que recibe la superficie es solo una parte de lo que se podría recibir desde fuera de la atmósfera. La transmisividad es una propiedad de la atmósfera que se expresa como la relación de la energía (promedio de todas las longitudes de onda) que llega a la superficie terrestre con respecto a la que se recibe en el límite superior de la atmósfera (extraterrestre). Los valores varían de 0 (sin transmisión) a 1 (transmisión completa). Los valores que se observan habitualmente son 0,6 o 0,7 para condiciones de cielo muy despejado y 0,5 para un cielo generalmente despejado.
El valor de la energía recibida en la superficie terrestre se encuentra en la ruta más corta a través de la atmósfera (es decir, el sol se encuentra en el cénit, o directamente encima) y para el nivel del mar. Para las áreas más allá del Trópico de Capricornio y el Trópico de Cáncer, el sol nunca se puede encontrar exactamente en el cénit, ni siquiera a mediodía. Sin embargo, este valor se sigue refiriendo al momento en el que el sol se encuentra en el cénit. Debido a las correcciones de los algoritmos a efectos de la elevación, siempre se debería dar la transmisividad a nivel del mar.
La transmisividad tiene una relación inversa con el parámetro de proporción difusa.
Consulte Entornos de análisis y Spatial Analyst para obtener detalles adicionales sobre los entornos de geoprocesamiento válidos para esta herramienta.