A Decomposição Temporal e Previsão dividem um gráfico da série de tempo em componentes de tendência, sazonais e restantes.
A Decomposição Temporal e Previsão aplicam a decomposição de tendência sazonal usando o método LOESS (STL) para calcular os componentes da série de tempo.
Exemplo
Uma organização ambiental está estudando as mudanças na qualidade do ar ao longo do tempo. A Decomposição Temporal pode ser usada para determinar como a sazonalidade afeta a qualidade do ar e se a qualidade do ar está melhorando ou piorando com o tempo. A previsão pode ser usada para prever os valores futuros da qualidade do ar.
Usar o recurso Decomposição Temporal
Complete as seguintes etapas para executar o recurso de análise de Decomposição Temporal:
- Crie um mapa, gráfico ou tabela usando o conjunto de dados com o qual deseja executar a decomposição temporal.
- Clique no botão Ação .
- Faça um dos seguintes:
- Se o seu cartão for um gráfico da série de tempo, permaneça na guia Análise temporal .
- Se o seu cartão for um tipo de gráfico ou uma tabela diferente, clique em Como ele alterou no painel Análise .
- Se o seu cartão for um mapa, clique na guia Localizar respostas e clique em Como ele alterou.
- Clique em Decomposição Temporal
- Para Escolher uma camada, selecione o conjunto de dados com o qual deseja realizar a decomposição temporal.
- Para Escolher um campo de data/hora, selecione o campo de data/hora que deseja usar para sua linha do tempo.
- Expanda Opções adicionais e digite valores para os parâmetros Escolher um campo de número, Ajustar para sazonalidade, e Selecionar tamanho da janela , se necessário. Consulte Anotações de uso para mais informações.
- Opcionalmente, selecione Mostrar previsão para incluir valores previstos em sua linha do tempo. Se Mostrar previsão estiver selecionado, você também poderá ajustar o parâmetro Definir ciclos de horizonte da previsão para determinar quantos ciclos estão incluídos na previsão. O número padrão de ciclos é dois.
- Clique em Executar.
Usar o recurso Previsão
Complete as seguintes etapas para executar o recurso de análise Previsão:
- Crie um mapa, gráfico ou tabela usando o conjunto de dados com o qual deseja executar a decomposição temporal.
- Clique no botão Ação .
- Faça um dos seguintes:
- Se o seu cartão for um gráfico da série de tempo, permaneça na guia Análise temporal .
- Se o seu cartão for um tipo de gráfico ou uma tabela diferente, clique em Como ele alterou no painel Análise .
- Se o seu cartão for um mapa, clique na guia Localizar respostas e clique em Como ele alterou.
- Clique em Previsão.
- Para Escolher uma camada, selecione o conjunto de dados com o qual deseja realizar a previsão.
- Para Escolher um campo de data/hora, selecione o campo de data/hora que deseja usar para sua linha do tempo.
- Expanda Opções adicionais e digite valores para os parâmetros Escolher um campo de número, Ajustar para sazonalidade, e Selecionar tamanho da janela , se necessário. Consulte Anotações de uso para mais informações.
- Ajuste o parâmetro Definir ciclos de horizonte da previsão para determinar quantos ciclos estão incluídos na previsão. O número padrão de ciclos é dois.
- Clique em Executar.
Anotações de uso
A Decomposição Temporal e Previsão podem ser encontradas usando o botão Ação em Como ele mudou na guia Localizar respostas ou na guia Análise temporal no gráfico na série de tempo. A entrada deve ser um conjunto de dados que inclui um campo de data/hora e deve ter no mínimo um ano de dados. Para mais informações, consulteComo funcionam a Decomposição Temporal e Previsão.
Use o parâmetro Escolher um campo dedata/hora para selecionar o campo de data/hora que terá a decomposição temporal aplicada.
Expanda Opções adicionais e revele os parâmetros Escolher um campo de número, Ajustar para sazonalidade, e Selecionar tamanho da janela. A seguinte tabela resume estes parâmetros, incluindo seus valores padrão:
Parâmetro | Descrição | Valor padrão |
---|---|---|
Escolher um campo de número | Um campo que denota o valor de cada observação na série de tempo. Por exemplo, ao decompor uma série de tempo de temperaturas globais médias ao longo do tempo, use o campo de temperatura para o parâmetro Escolher um campo de número . | Nenhum. O valor de cada ponto é baseado na contagem. |
Ajustar para sazonalidade | A sazonalidade é usada para determinar como o componente sazonal é calculado. As seguintes opções de sazonalidade estão disponíveis:
| Nenhum. Uma sazonalidade apropriada é escolhida com base em seus dados. |
Selecionar janela de tamanho | O tamanho da janela determina a porcentagem dos pontos de dados usados no cálculo de suavização. | 50%. |
Para Decomposição Temporal, selecione Mostrar previsão para criar uma série de tempo de saída mostrando valores futuros previstos com base no componente sazonal e no componente ajustado sazonalmente. O número de ciclos na previsão é baseado no parâmetro Definir ciclos de horizonte da previsão . O valor padrão é 2. O parâmetro Mostrar previsão não está disponível para Previsão pois está sempre ativado.
Os resultados para Decomposição Temporal e Previsão incluem dois conjuntos de dados: um denominado STL e um denominado Forecast - STL (incluídos apenas para decomposição temporal se Mostrar previsão estiver habilitado).
O conjunto de dados STL inclui campos para os dados brutos (com base na contagem ou no campo de número usado para decompor a série de tempo), quatro componentes (Sazonal, Tendência, Restante e Ajustado Sazonalmente) e o campo de data/hora original.
O conjunto de dados Forecast - STL inclui o campo de data/hora original, mais campos para os dados brutos (com base na contagem ou no campo de número usado para decompor a série de tempo), estimativa e intervalos de predição superior e inferior (80% e 95%).
Como funciona a Decomposição Temporal e Previsão
A Decomposição Temporal e Previsão usam o método STL para decompor uma série de tempo em seus componentes sazonais, tendência e restante. Os requisitos de dados no algoritmo STL são baseados na sazonalidade usada para descrever o componente sazonal.
Sazonalidade
A Sazonalidade (também denominada periodicidade) é usada em STL para ajustar os efeitos sazonais em uma série de tempo. Por exemplo, a qualidade do ar tende a seguir um ciclo anual com melhoria da qualidade do ar nos meses de inverno e diminuição da qualidade do ar nos meses de verão. Portanto, os dados da qualidade do ar podem ser decompostos usando a sazonalidade mensal para ajustar a série de tempo para o ciclo recorrente de qualidade do ar melhorada e reduzida para se ter uma idéia melhor da tendência geral da qualidade do ar ao longo do tempo.
A sazonalidade pode ser semanal, mensal, trimestral ou anual. Os requisitos de dados para Decomposição Temporal e Previsão dependem de qual sazonalidade é usada.
Para todas as opções de sazonalidade, os dados são divididos em subséries. Deve haver pelo menos uma ocorrência de cada subsérie no conjunto de dados para usar Decomposição Temporal ou Previsão.
A seguinte tabela resume as opções de sazonalidade e as subséries e requisitos de dados para cada uma.
Sazonalidade | Subséries | Requisitos dos dados |
---|---|---|
Semanalmente | Semanas 1 a 52 Por exemplo, 1 de Janeiro – 7 de Janeiro é a semana 1, 8 de Janeiro – 14 de Janeiro é a semana 2 e assim por diante. | Um mínimo de 52 semanas de dados com pelo menos um ponto de dados para cada semana. |
Mensalmente | Meses de Janeiro a Dezembro. | Um mínimo de 12 meses de dados com pelo menos um ponto de dados para cada mês. |
Trimestral | Trimestres 1 a 4. | Um mínimo de quatro trimestres de dados com pelo menos um ponto de dados para cada trimestre. |
Anualmente | Anos individuais. Por exemplo, se o seu conjunto de dados incluir dados começando em 2015 e terminando em 2020, as subséries seriam 2015, 2016, 2017, 2018, 2019 e 2020. | Um mínimo de quatro anos de dados com pelo menos um ponto de dados para cada ano. |
Exemplo
Você deseja executar a Decomposição Temporal ou Previsão usando sazonalidade semanal para um conjunto de dados com dados coletados diariamente de Janeiro de 2015 a Dezembro de 2020. No entanto, o sistema para coletar dados é encerrado todos os anos de 1º a 10 de Janeiro para atualizações e manutenção, portanto, nenhum dado é coletado durante esse período. Para usar a sazonalidade semanal, seus dados devem incluir pelo menos uma ocorrência de dados para cada semana. Como a semana 1 (1º de Janeiro a 7 de Janeiro) está sem seus dados, você não poderá usar a sazonalidade semanal no conjunto de dados. Todas as outras opções de sazonalidade são compatíveis com o conjunto de dados pois ele atende aos requisitos mínimos de dados e tem pelo menos uma ocorrência para cada subsérie mensal, trimestral e anual.
Para tornar o conjunto de dados compatível com a sazonalidade semanal, o desligamento programado foi alterado para 2 de Janeiro a partir de 2021. Os dados coletados em 1º de Janeiro de 2021 fazem parte das subséries da semana 1, portanto, o conjunto de dados agora tem pelo menos um ponto de dados para cada subsérie.
Anotação:
O requisito de um ponto de dados por subsérie é um requisito geral, não um requisito anual. É por isso que o ponto de dados de 2 de Janeiro de 2021 atende ao requisito, embora não haja dados disponíveis para a semana 1 de 2015 a 2020.
Intervalos de previsão
Os intervalos de previsão são calculados pela capacidade de previsão usando a seguinte equação de Hyndman e Athanasopoulos (2018, cap. 7):
ŷT+h|T ± cσh
Onde:
- ŷt=O valor médio da distribuição de previsão no tempo t.
- ŷT+h|T=A previsão acumulada de ŷt até o tempo T para h ciclos do horizonte de previsão.
- c=Probabilidade de cobertura
- σh=Raiz quadrada de variação da previsão
Limitações
Previsão e Decomposição Temporal não oferecem suporte a campos somente de hora (em outras palavras, campos de data/hora com um componente de hora, mas sem datas).
Referências
Hyndman, Rob J., e George Athanasopoulos. 2018. Previsão: Princípios e Prática. 2ª edição. Melbourne, Austrália: OTexts. OTexts.com/fpp2.