Label | Explanation | Data Type |
Input Raster | The raster dataset to classify. The preferred input is a 3-band, 8-bit segmented raster dataset in which all the pixels in the same segment have the same color. The input can also be a 1-band, 8-bit grayscale segmented raster. If no segmented raster is available, you can use any Esri-supported raster dataset. | Raster Layer; Mosaic Layer; Image Service; String |
Output Classifier Definition File | The output JSON format file that will contain attribute information, statistics, hyperplane vectors, and other information for the classifier. An .ecd file will be created. | File |
Additional Input Raster (Optional) | Ancillary raster datasets, such as a multispectral image or a DEM, will be incorporated to generate attributes and other required information for classification. This parameter is optional. | Raster Layer; Mosaic Layer; Image Service; String |
Segment Attributes Used (Optional) | Specifies the attributes that will be included in the attribute table associated with the output raster.
| String |
Dimension Value Field (Optional) | Contains dimension values in the input training sample feature class. | Field |
Available with Spatial Analyst license.
Summary
Generates an Esri classifier definition file (.ecd) using the Support Vector Machine (SVM) classification definition.
Usage
The SVM classifier is a supervised classification method. It is well suited for segmented raster input but can also handle standard imagery. It is a classification method commonly used in the research community.
For standard image inputs, the tool accepts multiband imagery with any bit depth, and it will perform the SVM classification on a pixel basis, based on the input training feature file.
For segmented rasters that have their key property set to Segmented, the tool computes the index image and associated segment attributes from the RGB segmented raster. The attributes are computed to generate the classifier definition file to be used in a separate classification tool. The attributes for each segment can be computed from any Esri-supported image.
There are several advantages to using the SVM classifier rather than the maximum likelihood classification method:
- The SVM classifier needs fewer samples and does not require the samples to be normally distributed.
- It is less susceptible to noise, correlated bands, and an unbalanced number or size of training sites within each class.
Any Esri-supported raster is accepted as input, including raster products, segmented rasters, mosaics, image services, or generic raster datasets. Segmented rasters must be 8-bit rasters with 3 bands.
The Segment Attributes parameter is only active if one of the raster layer inputs is a segmented image.
Parameters
TrainSupportVectorMachineClassifier(in_raster, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
Name | Explanation | Data Type |
in_raster | The raster dataset to classify. The preferred input is a 3-band, 8-bit segmented raster dataset in which all the pixels in the same segment have the same color. The input can also be a 1-band, 8-bit grayscale segmented raster. If no segmented raster is available, you can use any Esri-supported raster dataset. | Raster Layer; Mosaic Layer; Image Service; String |
out_classifier_definition | The output JSON format file that will contain attribute information, statistics, hyperplane vectors, and other information for the classifier. An .ecd file will be created. | File |
in_additional_raster (Optional) | Ancillary raster datasets, such as a multispectral image or a DEM, will be incorporated to generate attributes and other required information for classification. This parameter is optional. | Raster Layer; Mosaic Layer; Image Service; String |
used_attributes [used_attributes;used_attributes,...] (Optional) | Specifies the attributes that will be included in the attribute table associated with the output raster.
This parameter is only enabled if the Segmented key property is set to true on the input raster. If the only input to the tool is a segmented image, the default attributes are COLOR, COUNT, COMPACTNESS, and RECTANGULARITY. If an in_additional_raster value is included as an input with a segmented image, MEAN and STD are also available attributes. | String |
dimension_value_field (Optional) | Contains dimension values in the input training sample feature class. | Field |