Funktionsweise der Richtungsverteilung (Standardabweichungsellipse)

Sie können zwar einen Eindruck von der Ausrichtung erhalten, indem Sie die Features auf der Karte darstellen, durch die Berechnung der Standardabweichungsellipse wird der Trend jedoch deutlich. Sie können die Standardabweichungsellipse anhand der Positionen der Features oder der Positionen berechnen, die durch einen mit den Features verknüpften Attributwert beeinflusst werden. Letztere Methode wird als gewichtete Standardabweichungsellipse bezeichnet.

Berechnungen

Die Standardabweichungsellipse wird folgendermaßen angegeben:

Die Mathematik hinter dem Werkzeug "Standardabweichungsellipse"

Während x und y die Koordinaten für das Feature i sind, stellen {, } den arithmetischen Mittelpunkt der Features dar und n entspricht der Gesamtzahl der Features.

Die Beispiel-Kovarianzmatrix wird in einem Standardformular berücksichtigt, was dazu führt, dass die Matrix durch Eigenwerte und Eigenvektoren dargestellt wird. Die Standardabweichungen für die X- und Y-Achse lauten dann:

Die Mathematik hinter dem Werkzeug "Standardabweichungsellipse"

Weitere Informationen zu Eigenwerten und Eigenvektoren finden Sie unter Zusätzliche Ressourcen.

Ausgabe und Interpretation

Für zweidimensionale Daten erstellt das Werkzeug Richtungsverteilung (Standardabweichungsellipse) eine neue Feature-Class mit einem elliptische Polygon, das auf den arithmetischen Mittelpunkt für alle Features zentriert ist (oder für alle Fälle, in denen ein Wert für Case-Feld angegeben wurde). Die Attributwerte für diese Ausgabe-Ellipsenpolygone schließen zwei Standardentfernungen (lange und kurze Achse) ein; die Ausrichtung der Ellipse und ggf. das Case-Feld. Die Ausrichtung stellt die Rotation der langen Achse gemessen im Uhrzeigersinn von 12 Uhr aus dar. Sie können auch die Anzahl der darzustellenden Standardabweichungen (1, 2 oder 3) angeben.

Abbildung des Werkzeugs "Richtungsverteilung"

Potenzielle Anwendungsbereiche

  • Durch die Darstellung des Verteilungstrends für eine Reihe von Delikten kann eine Beziehung zu bestimmten physischen Features (eine Reihe von Bars oder Restaurants, ein bestimmter Boulevard usw.) identifiziert werden.
  • Durch die Darstellung von Stichproben eines bestimmten Schadstoffs in Grundwasserbrunnen kann die Ausbreitung des Giftstoffs ermittelt werden, was für die Einleitung entsprechender Entschärfungsmaßnahmen hilfreich sein.
  • Der Vergleich der Größe, des Shape und der Überlappung von Ellipsen für Gruppen aus verschiedenen ethnischen Herkünften kann Einblicke in die Trennung nach ethnischer Herkunft (die so genannte "racial segregation") liefern.
  • Anhand der Darstellung von Ellipsen für den Ausbruch einer Krankheit im Zeitverlauf lässt sich deren Verbreitung modellieren.
  • Die Überprüfung der Höhenverteilung für Stürme einer bestimmten Kategorie kann ein nützlicher Gesichtspunkt sein, der bei der Untersuchung der Beziehung zwischen atmosphärischen Bedingungen und Flugzeugunglücken berücksichtigt werden sollte.

Zusätzliche Quellen

Chew, Victor. "Confidence, prediction, and tolerance regions for the multivariate normal distribution." Journal of the American Statistical Association 61.315 (1966): 605-617.

Fisher, N. I., T. Lewis, and B. J. J. Embleton. Statistical Analysis of Spherical Data. 1st ed. Cambridge: Cambridge University Press, 1987. Cambridge Books Online. Web. 26 April 2016.

Levine, Ned. "CrimeStat III: a spatial statistics program for the analysis of crime incident locations (version 3.0)." Houston (TX): Ned Levine & Associates/Washington, DC: National Institute of Justice (2004).

Mitchell, Andy. The ESRI Guide to GIS Analysis, Volume 2. ESRI Press, 2005.

Wang, Bin, Wenzhong Shi, and Zelang Miao. (2015) Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE 10(3), e0118537.