标注 | 说明 | 数据类型 |
输入栅格 | 待分类的栅格数据集。 首选输入项为 8 位 3 波段分割栅格数据集,其中所有位于同一分割的像素具有相同的颜色。输入也可以是 8 位单波段灰度分割栅格。如果没有可用的分割栅格,可使用任何 Esri 支持的栅格数据集 | Raster Layer; Mosaic Layer; Image Service; String |
输出分类器定义文件 | 包含属性信息、统计数据、超平面矢量和分类器所需的其他信息的输出 JSON 格式文件。 将创建 .ecd 文件。 | File |
附加输入栅格 (可选) | 将对其他栅格数据集(如多光谱影像或 DEM)进行整合,从而为分类生成属性和其他所需信息。 设置此参数属于可选操作。 | Raster Layer; Mosaic Layer; Image Service; String |
所用的分割影像属性 (可选) | 指定要包括在与输出栅格相关联的属性表中的属性。
| String |
维度值字段 (可选) | 在输入训练样本要素类中包含尺寸值。 | Field |
需要 Spatial Analyst 许可。
摘要
使用支持向量机 (SVM) 分类定义生成 Esri 分类器定义文件 (.ecd)。
使用情况
SVM 分类器是一种监督分类方法。非常适合用于处理分割栅格输入,还可以处理标准影像。是研究团体常用的一种分类方法。
对于标准影像输入,工具接受具有任意位深度的多波段影像,它还会基于输入训练要素文件基于像素执行 SVM 分类。
对于关键属性设置为分割的分割栅格,此工具将计算 RGB 分割栅格中的索引影像及相关的分割影像属性。计算的属性将用于生成要在独立分类工具中使用的分类器定义文件。可根据任意 Esri 支持的影像计算每个分割影像的属性。
使用 SVM 分类器而不是最大似然分类方法有几个优点:
- SVM 分类器需要的样本较少,且不需要样本呈正态分布。
- 它更不容易被噪音、关联波段以及每个类中不平衡的训练场数量或大小所影响。
任何 Esri 支持的栅格都可用作输入,包括栅格产品、分割栅格、镶嵌、影像服务或通用栅格数据集。分割栅格必须为 8 位 3 波段栅格。
仅在其中一个栅格图层输入为分隔影像的情况下激活分割属性参数。
参数
TrainSupportVectorMachineClassifier(in_raster, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
名称 | 说明 | 数据类型 |
in_raster | 待分类的栅格数据集。 首选输入项为 8 位 3 波段分割栅格数据集,其中所有位于同一分割的像素具有相同的颜色。输入也可以是 8 位单波段灰度分割栅格。如果没有可用的分割栅格,可使用任何 Esri 支持的栅格数据集 | Raster Layer; Mosaic Layer; Image Service; String |
out_classifier_definition | 包含属性信息、统计数据、超平面矢量和分类器所需的其他信息的输出 JSON 格式文件。 将创建 .ecd 文件。 | File |
in_additional_raster (可选) | 将对其他栅格数据集(如多光谱影像或 DEM)进行整合,从而为分类生成属性和其他所需信息。 设置此参数属于可选操作。 | Raster Layer; Mosaic Layer; Image Service; String |
used_attributes [used_attributes;used_attributes,...] (可选) | 指定要包括在与输出栅格相关联的属性表中的属性。
仅当在输入栅格上将分割关键属性设置为 true 时,此参数才可用。 如果仅对此工具输入分割影像,则默认属性为 COLOR、COUNT、COMPACTNESS 和 RECTANGULARITY。 如果将 in_additional_raster 值作为输入与分割影像一起添加进来,则还可以使用 MEAN 和 STD 属性。 | String |
dimension_value_field (可选) | 在输入训练样本要素类中包含尺寸值。 | Field |