ラベル | 説明 | データ タイプ |
入力ラスター | 分類対象のラスター データセット。 | Raster Layer; Mosaic Layer; Image Service; String |
出力分類器定義ファイル | 分類器の属性情報、統計情報、ハイパープレーン ベクトル、およびその他の情報を含む出力 JSON 形式ファイルです。 .ecd ファイルが作成されます。 | File |
追加入力ラスター (オプション) | セグメント化された画像や DEM などの補助ラスター データセットを取り込みます。このパラメーターはオプションです。 | Raster Layer; Mosaic Layer; Image Service; String |
使用するセグメント属性 (オプション) | 出力ラスターに関連付けられた属性テーブルに含める属性を指定します。
| String |
ディメンション値フィールド (オプション) | 入力トレーニング サンプル フィーチャクラスのディメンション値が含まれます。 | Field |
Spatial Analyst のライセンスで利用可能。
サマリー
最尤法分類器 (MLC) 分類定義を使用して、Esri 分類器定義ファイル (.ecd) を作成します。
使用法
最尤法分類プロセスを実行するには、[ラスターの分類 (Classify Raster)] ツールで同じ入力ラスターおよび出力 *.ecd ファイルを使用します。
入力として、Esri がサポートし、有効なビット深度を持つ任意のラスターを指定できます。
セグメント ラスター データセットを作成するには、[セグメント平均シフト (Segment Mean Shift)] ツールを使用します。
[出力分類器定義ファイル] には、[最尤法分類 (Maximum Likelihood Classification)] に適した属性統計が含まれています。
[セグメント属性] パラメーターは、ラスター レイヤー入力のうちのいずれかがセグメント画像である場合にのみ、アクティブになります。
トレーニング サンプル データは、[トレーニング サンプル マネージャー] を使用して複数回収集されている必要があります。 各サンプルのディメンション値は、トレーニング サンプル フィーチャクラスのフィールドにリストされています。このフィールドは、[ディメンション値フィールド] パラメーターで指定します。
パラメーター
TrainMaximumLikelihoodClassifier(in_raster, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
名前 | 説明 | データ タイプ |
in_raster | 分類対象のラスター データセット。 | Raster Layer; Mosaic Layer; Image Service; String |
out_classifier_definition | 分類器の属性情報、統計情報、ハイパープレーン ベクトル、およびその他の情報を含む出力 JSON 形式ファイルです。 .ecd ファイルが作成されます。 | File |
in_additional_raster (オプション) | セグメント化された画像や DEM などの補助ラスター データセットを取り込みます。このパラメーターはオプションです。 | Raster Layer; Mosaic Layer; Image Service; String |
used_attributes [used_attributes,...] (オプション) | 出力ラスターに関連付けられた属性テーブルに含める属性を指定します。
このパラメーターは、入力ラスターで [セグメント化] キー プロパティを true に設定した場合にのみ有効になります。 このツールへの入力が、セグメント画像のみである場合、デフォルトの属性は COLOR、COUNT、COMPACTNESS、および RECTANGULARITY になります。 セグメント画像とともに in_additional_raster 値が入力として含まれている場合、MEAN および STD 属性も使用できます。 | String |
dimension_value_field (オプション) | 入力トレーニング サンプル フィーチャクラスのディメンション値が含まれます。 | Field |