時空間パターン分析ツールセットの概要

時空間パターン分析ツールセットの分析ツールと統計ツールを使用して、パターンを識別し、時空間キューブ内のデータを確認することができます。 時空間キューブを作成したら、これらの分析ツールを使用して、キューブに集約されたデータをさらに深く理解することができます。

注意:

キューブのコンテンツを表示する手法については、「時空間キューブの視覚化」をご参照ください。

また、空間統計リソース ページで使用できる Space Time Cube Explorer アドインは、タイム スライダーとレンジ スライダーを自動で設定したり、さまざまな表示テーマ オプションを活用したりすることで、時空間キューブのコンテンツや解析結果を 2D や 3D で視覚化できます。

ツール説明

変化ポイントの検出 (Change Point Detection)

時系列の統計的特性が時空間キューブの各ロケーションで変化したときの時間ステップを検出します。

時空間ホット スポット分析 (Emerging Hot Spot Analysis)

[ポイントの集約による時空間キューブの作成 (Create Space Time Cube By Aggregating Points)] ツール、[定義済みの位置から時空間キューブを作成 (Create Space Time Cube From Defined Locations)] ツール、または [多次元ラスター レイヤーから時空間キューブを作成 (Create Space Time Cube from Multidimensional Raster Layer)] ツールを使用して作成した時空間キューブ内のポイント密度 (カウント) または値のクラスタリングの傾向を識別します。 カテゴリには、新規、連続性、増大、持続性、減衰、散発性、振動、および履歴のホット スポットとコールド スポットがあります。

ローカル 外れ値分析 (Local Outlier Analysis)

統計的に有意なクラスターおよび外れ値を空間と時間の両方から特定します。 このツールは、Anselin Local Moran's I 統計の時空間での実装です。

時系列クラスタリング (Time Series Clustering)

時系列の特性の類似度に基づいて、時空間キューブに格納された時系列のコレクションを区分します。 時間経過に伴う類似する値がある、同時に増減する傾向がある、類似する繰り返しパターンがあるという 3 つの条件に基づいて、時系列がクラスター化されます。 このツールの出力は 2D マップになり、キューブ内のそれぞれの位置がクラスター メンバーシップとメッセージでシンボル表示されます。 また、クラスターごとの代表的な時系列シグネチャの情報を示すチャートも出力に含まれます。

時系列相互相関 (Time Series Cross Correlation)

時空間キューブに格納された 2 つの時系列間のさまざまなタイム ラグにおける相互相関を計算します。

参考資料

[空間統計リソース] ページには、空間統計ツールや時空間パターン マイニング ツールの使用に役立つ、次のようなさまざまなリソースが含まれています。

  • 実践向けのチュートリアル
  • ワークショップ ビデオおよびプレゼンテーション
  • トレーニングおよび Web セミナー
  • 書籍、記事、および技術資料へのリンク
  • サンプル スクリプトとケース スタディ


このトピックの内容
  1. 参考資料