Étiquette | Explication | Type de données |
Raster en entrée | Jeu de données raster à classer. Il est recommandé d’utiliser en entrée un jeu de données raster segmenté de 8 bits, à 3 canaux, dans lequel tous les pixels appartenant à un segment possèdent la même couleur. Vous pouvez également faire appel à un raster segmenté monocanal de 8 bits, en nuances de gris. Si aucun raster segmenté n'est disponible, vous pouvez utiliser n'importe quel jeu de données raster pris en charge par Esri. | Raster Layer; Mosaic Layer; Image Service; String |
Fichier de définition de classifieur en sortie | Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d’autres informations pour le classificateur. Un fichier .ecd sera créé. | File |
Raster en entrée supplémentaire (Facultatif) | Des jeux de données raster auxiliaires, comme une image multispectrale ou un MNE, seront incorporés pour générer des attributs et d’autres informations requises par la classification. Ce paramètre est facultatif. | Raster Layer; Mosaic Layer; Image Service; String |
Attributs de segments utilisés (Facultatif) | Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie.
| String |
Champ de valeur de dimension (Facultatif) | Contient les valeurs de dimension dans la classe d’entités des échantillons d’apprentissage en entrée. | Field |
Disponible avec une licence Spatial Analyst.
Synthèse
Génère un fichier de définition de classificateur Esri (.ecd) à l’aide de la définition de classification des machines à vecteurs de support (SVM).
Utilisation
Le classificateur de machines à vecteurs de support est une méthode de classification assistée. Elle est parfaitement adaptée aux rasters segmentés en entrée, mais peut également gérer des images standard. C'est une méthode de classification souvent utilisée par les chercheurs.
Pour les entrées d’image standard, l’outil accepte les images multicanales de n’importe quelle profondeur de couleurs et réalise la classification de machines à vecteurs de support par pixel, en fonction du fichier d’entités d’apprentissage en entrée.
Pour les rasters segmentés, dont la propriété de clé est définie sur Segmenté, l'outil calcule l'image d'index et les attributs de segments associés à partir du raster segmenté RVB. Les attributs sont calculés pour générer le fichier de définition de classificateur à utiliser dans un outil de classification distinct. Les attributs de chaque segment peuvent être calculés à partir de toute image prise en charge par Esri.
Le classificateur de machines à vecteurs de support présente plusieurs avantages par rapport à la méthode de classification de vraisemblance maximale :
- Le classificateur de machines à vecteurs de support a besoin d’un moins grand nombre d’échantillons, qui n’ont pas besoin d’être normalement distribués.
- Il est moins sensible au bruit, aux canaux corrélés et au nombre ou à la taille non équilibrés de sites d'apprentissage au sein de chaque classe.
Tout raster pris en charge par Esri est accepté en entrée, y compris les produits raster, les rasters segmentés, les mosaïques, les services d'imagerie ou les jeux de données raster génériques. Les rasters segmentés doivent être des rasters 8 bits à 3 canaux.
Le paramètre Segment Attributes (Attributs de segment) n’est actif que si l’une des entrées de la couche raster est une image segmentée.
Paramètres
TrainSupportVectorMachineClassifier(in_raster, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
Nom | Explication | Type de données |
in_raster | Jeu de données raster à classer. Il est recommandé d’utiliser en entrée un jeu de données raster segmenté de 8 bits, à 3 canaux, dans lequel tous les pixels appartenant à un segment possèdent la même couleur. Vous pouvez également faire appel à un raster segmenté monocanal de 8 bits, en nuances de gris. Si aucun raster segmenté n'est disponible, vous pouvez utiliser n'importe quel jeu de données raster pris en charge par Esri. | Raster Layer; Mosaic Layer; Image Service; String |
out_classifier_definition | Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d’autres informations pour le classificateur. Un fichier .ecd sera créé. | File |
in_additional_raster (Facultatif) | Des jeux de données raster auxiliaires, comme une image multispectrale ou un MNE, seront incorporés pour générer des attributs et d’autres informations requises par la classification. Ce paramètre est facultatif. | Raster Layer; Mosaic Layer; Image Service; String |
used_attributes [used_attributes;used_attributes,...] (Facultatif) | Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie.
Ce paramètre est activé uniquement si la propriété de clé Segmented est vraie (définie sur True) dans le raster en entrée. Si la seule entrée de l’outil est une image segmentée, les attributs par défaut sont COLOR, COUNT, COMPACTNESS et RECTANGULARITY. Si une valeur in_additional_raster est incluse comme entrée avec une image segmentée, les attributs MEAN et STD sont également disponibles. | String |
dimension_value_field (Facultatif) | Contient les valeurs de dimension dans la classe d’entités des échantillons d’apprentissage en entrée. | Field |
Environnements
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?