Etiqueta | Explicación | Tipo de datos |
Ráster de entrada | El dataset ráster a clasificar. La entrada preferente es un dataset ráster segmentado de 3 bandas y 8 bits en el cual todos los píxeles del mismo segmento tienen el mismo color. La entrada también puede ser un ráster segmentado en escala de grises de 1 banda y 8 bits. Si no hay disponible ningún ráster segmentado, puede utilizar cualquier dataset ráster compatible con Esri. | Raster Layer; Mosaic Layer; Image Service; String |
Archivo de definición de clasificador de salida | El archivo en formato JSON de salida que contendrá información de atributos, estadísticas, vectores de hiperplano y otra información requerida por el clasificador. Se creará un archivo .ecd. | File |
Ráster de entrada adicional (Opcional) | Se incorporan datasets ráster secundarios, como una imagen multiespectral o un DEM, para generar atributos y otra información requerida por la clasificación. Este parámetro es opcional. | Raster Layer; Mosaic Layer; Image Service; String |
Atributos de segmento utilizados (Opcional) | Especifica los atributos que se incluirán en la tabla de atributos asociada con el ráster de salida.
| String |
Campo de valor de dimensión (Opcional) | Contiene valores de dimensión de la clase de entidad de muestra de entrenamiento de entrada. | Field |
Disponible con una licencia de Spatial Analyst.
Resumen
Genera un archivo de definición de clasificador de Esri (.ecd) utilizando la definición de clasificación de Máquina de vectores de soporte (SVM).
Uso
El clasificador SVM es un potente método de clasificación supervisado. Es idóneo para entradas de ráster segmentadas, pero también permite manejar imágenes estándar. Es un método de clasificación que se suele utilizar en la comunidad de investigación.
Para las entradas de imagen estándar, la herramienta acepta imágenes de varias bandas con cualquier profundidad de bit y realiza la clasificación de SVM por píxel, según el archivo de entidades de entrenamiento de entrada.
Para los rásteres segmentados, que tienen establecida la propiedad clave en Segmentada, la herramienta calcula la imagen de índice y los atributos de segmento asociados del ráster segmentado RGB. Se calculan los atributos para generar el archivo de definición de clasificador que se va a utilizar en una herramienta de clasificación aparte. Los atributos de cada segmento se pueden calcular desde cualquier imagen compatible con Esri.
El uso del clasificador SVM en lugar del método de clasificación de máxima probabilidad supone varias ventajas:
- El clasificador SVM necesita menos muestras y no requiere que las muestras estén distribuidas normalmente.
- Es menos susceptible al ruido, a las bandas correlacionadas y al desequilibrio entre la cantidad o el tamaño de los sitios de entrenamiento dentro de cada clase.
Se acepta como entrada cualquier ráster compatible con Esri, incluidos productos de ráster, rásteres segmentados, mosaicos, servicios de imágenes o datasets ráster genéricos. Los rásteres segmentados deben tener 8 bits y 3 bandas.
El parámetro Atributos de segmento solo está activo si una de las entradas de capa ráster es una imagen segmentada.
Parámetros
TrainSupportVectorMachineClassifier(in_raster, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
Nombre | Explicación | Tipo de datos |
in_raster | El dataset ráster a clasificar. La entrada preferente es un dataset ráster segmentado de 3 bandas y 8 bits en el cual todos los píxeles del mismo segmento tienen el mismo color. La entrada también puede ser un ráster segmentado en escala de grises de 1 banda y 8 bits. Si no hay disponible ningún ráster segmentado, puede utilizar cualquier dataset ráster compatible con Esri. | Raster Layer; Mosaic Layer; Image Service; String |
out_classifier_definition | El archivo en formato JSON de salida que contendrá información de atributos, estadísticas, vectores de hiperplano y otra información requerida por el clasificador. Se creará un archivo .ecd. | File |
in_additional_raster (Opcional) | Se incorporan datasets ráster secundarios, como una imagen multiespectral o un DEM, para generar atributos y otra información requerida por la clasificación. Este parámetro es opcional. | Raster Layer; Mosaic Layer; Image Service; String |
used_attributes [used_attributes;used_attributes,...] (Opcional) | Especifica los atributos que se incluirán en la tabla de atributos asociada con el ráster de salida.
Este parámetro solo está habilitado si la propiedad clave Segmentado se establece en verdadera en el ráster de entrada. Si la única entrada en la herramienta es una imagen segmentada, los atributos predeterminados son COLOR, COUNT, COMPACTNESS y RECTANGULARITY. Si se incluye un valor in_additional_raster como entrada junto a la imagen segmentada, también están disponibles los atributos MEAN y STD. | String |
dimension_value_field (Opcional) | Contiene valores de dimensión de la clase de entidad de muestra de entrenamiento de entrada. | Field |