Verknüpfungspunkte berechnen (Data Management)

Zusammenfassung

Berechnet die Verknüpfungspunkte zwischen überlappenden Mosaik-Dataset-Elementen. Die Verknüpfungspunkte können anschließend zum Berechnen der Blockausgleichung für das Mosaik-Dataset verwendet werden.

Verwendung

  • Wenn Sie über ein Mosaik-Dataset mit vielen Elementen verfügen, geben Sie den Parameterwert Ausgabe-Bild-Features umsichtig an, da die Verarbeitung des Ergebnisses sehr viel Zeit in Anspruch nehmen kann.

Parameter

BeschriftungErläuterungDatentyp
Eingabe-Mosaik-Dataset

Das Eingabe-Mosaik-Dataset, das zum Erstellen der Verknüpfungspunkte verwendet wird.

Mosaic Layer; Mosaic Dataset
Ausgabe-Passpunkte

Die Ausgabe-Passpunkttabelle. Die Tabelle enthält die mit diesem Werkzeug erstellten Verknüpfungspunkte.

Feature Class
Ähnlichkeit
(optional)

Gibt die Ähnlichkeit an, die für übereinstimmende Verknüpfungspunkte verwendet wird.

  • Geringe ÄhnlichkeitDie Kriterien für die Ähnlichkeit für die beiden übereinstimmenden Punkte sind niedrig. Mit dieser Option werden die meisten übereinstimmenden Punkte erzeugt, einige Übereinstimmungen weisen jedoch möglicherweise eine höhere Fehlerstufe auf.
  • Mittlere ÄhnlichkeitDie Kriterien für die Ähnlichkeit für die beiden übereinstimmenden Punkte sind mittel.
  • Große ÄhnlichkeitDie Kriterien für die Ähnlichkeit für die beiden übereinstimmenden Punkte sind groß. Mit dieser Option wird die geringste Anzahl übereinstimmender Punkte erzeugt, die einzelnen Übereinstimmungen weisen jedoch eine niedrigere Fehlerstufe auf.
String
Eingabemaske
(optional)

Eine Polygon-Feature-Class, mit der Bereiche aus der Berechnung von Passpunkten ausgeschlossen werden.

Das Feld mask steuert die Ein- oder Ausschließung von Bereichen. Der Wert 1 gibt an, dass die von den Polygonen definierten Bereiche (innerhalb) aus der Berechnung ausgeschlossen werden. Der Wert 2 gibt an, dass die definierten Polygone (innerhalb) in die Berechnung eingeschlossen werden, während Bereiche außerhalb der Polygone ausgeschlossen werden.

Feature Layer
Ausgabe-Bild-Features
(optional)

Die Ausgabe-Tabelle mit den Bild-Feature-Punkten. Sie wird als Polygon-Feature-Class gespeichert. Diese Ausgabe kann sehr umfangreich sein.

Feature Class
Punktdichte

Legt die Anzahl der zu erstellenden Passpunkte fest.

  • Geringe PunktdichteDie Punktdichte ist niedrig. Dadurch wird die niedrigste Anzahl von Verknüpfungspunkten erstellt.
  • Mittlere PunktdichteDie Punktdichte ist mittel. Dadurch wird eine mittelgroße Anzahl von Punkten erstellt.
  • Hohe PunktdichteDie Punktdichte ist hoch. Dadurch wird die höchste Anzahl von Punkten erstellt.
String
Punktverteilung

Gibt an, ob die Punkte eine regelmäßige oder eine zufällige Verteilung aufweisen.

  • Zufällige PunktverteilungPunkte werden nach dem Zufallsprinzip generiert. Nach dem Zufallsprinzip erstellte Punkte sind besser für überlappende Flächen mit unregelmäßigen Formen geeignet.
  • Regelmäßige PunktverteilungPunkte werden basierend auf einem festen Muster generiert. Für Punkte, die auf einem festgelegten Muster basieren, wird anhand der Punktdichte bestimmt, wie häufig Punkte erstellt werden sollen.
String
Genauigkeit der Bildposition

Gibt das Schlüsselwort an, das die Genauigkeit der Bilddaten beschreibt.

  • Niedrige Genauigkeit der BildpositionBilder weisen eine große Verschiebung und eine große Rotation auf (> 5 Grad).Der SIFT-Algorithmus dient zur Berechnung der Punktzuordnung.
  • Mittlere Genauigkeit der BildpositionBilder weisen eine mittlere Verschiebung und eine kleine Rotation auf (< 5 Grad).Der Harris-Algorithmus dient zur Berechnung der Punktzuordnung.
  • Hohe Genauigkeit der BildpositionBilder weisen eine kleine Verschiebung und eine kleine Rotation auf ( 5 Grad).Der Harris-Algorithmus dient zur Berechnung der Punktzuordnung.
String
Zusätzliche Optionen
(optional)

Zusätzliche Optionen für die Anpassungs-Engine. Die Optionen werden nur von Anpassungs-Engines von Drittanbietern verwendet.

Value Table

arcpy.management.ComputeTiePoints(in_mosaic_dataset, out_control_points, {similarity}, {in_mask_dataset}, {out_image_features}, density, distribution, location_accuracy, {options})
NameErläuterungDatentyp
in_mosaic_dataset

Das Eingabe-Mosaik-Dataset, das zum Erstellen der Verknüpfungspunkte verwendet wird.

Mosaic Layer; Mosaic Dataset
out_control_points

Die Ausgabe-Passpunkttabelle. Die Tabelle enthält die mit diesem Werkzeug erstellten Verknüpfungspunkte.

Feature Class
similarity
(optional)

Gibt die Ähnlichkeit an, die für übereinstimmende Verknüpfungspunkte verwendet wird.

  • LOWDie Kriterien für die Ähnlichkeit für die beiden übereinstimmenden Punkte sind niedrig. Mit dieser Option werden die meisten übereinstimmenden Punkte erzeugt, einige Übereinstimmungen weisen jedoch möglicherweise eine höhere Fehlerstufe auf.
  • MEDIUMDie Kriterien für die Ähnlichkeit für die beiden übereinstimmenden Punkte sind mittel.
  • HIGHDie Kriterien für die Ähnlichkeit für die beiden übereinstimmenden Punkte sind groß. Mit dieser Option wird die geringste Anzahl übereinstimmender Punkte erzeugt, die einzelnen Übereinstimmungen weisen jedoch eine niedrigere Fehlerstufe auf.
String
in_mask_dataset
(optional)

Eine Polygon-Feature-Class, mit der Bereiche aus der Berechnung von Passpunkten ausgeschlossen werden.

Das Feld mask steuert die Ein- oder Ausschließung von Bereichen. Der Wert 1 gibt an, dass die von den Polygonen definierten Bereiche (innerhalb) aus der Berechnung ausgeschlossen werden. Der Wert 2 gibt an, dass die definierten Polygone (innerhalb) in die Berechnung eingeschlossen werden, während Bereiche außerhalb der Polygone ausgeschlossen werden.

Feature Layer
out_image_features
(optional)

Die Ausgabe-Tabelle mit den Bild-Feature-Punkten. Sie wird als Polygon-Feature-Class gespeichert. Diese Ausgabe kann sehr umfangreich sein.

Feature Class
density

Legt die Anzahl der zu erstellenden Passpunkte fest.

  • LOWDie Punktdichte ist niedrig. Dadurch wird die niedrigste Anzahl von Verknüpfungspunkten erstellt.
  • MEDIUMDie Punktdichte ist mittel. Dadurch wird eine mittelgroße Anzahl von Punkten erstellt.
  • HIGHDie Punktdichte ist hoch. Dadurch wird die höchste Anzahl von Punkten erstellt.
String
distribution

Gibt an, ob die Punkte eine regelmäßige oder eine zufällige Verteilung aufweisen.

  • RANDOMPunkte werden nach dem Zufallsprinzip generiert. Nach dem Zufallsprinzip erstellte Punkte sind besser für überlappende Flächen mit unregelmäßigen Formen geeignet.
  • REGULARPunkte werden basierend auf einem festen Muster generiert. Für Punkte, die auf einem festgelegten Muster basieren, wird anhand der Punktdichte bestimmt, wie häufig Punkte erstellt werden sollen.
String
location_accuracy

Gibt das Schlüsselwort an, das die Genauigkeit der Bilddaten beschreibt.

  • LOWBilder weisen eine große Verschiebung und eine große Rotation auf (> 5 Grad).Der SIFT-Algorithmus dient zur Berechnung der Punktzuordnung.
  • MEDIUMBilder weisen eine mittlere Verschiebung und eine kleine Rotation auf (< 5 Grad).Der Harris-Algorithmus dient zur Berechnung der Punktzuordnung.
  • HIGHBilder weisen eine kleine Verschiebung und eine kleine Rotation auf ( 5 Grad).Der Harris-Algorithmus dient zur Berechnung der Punktzuordnung.
String
options
[options,...]
(optional)

Zusätzliche Optionen für die Anpassungs-Engine. Die Optionen werden nur von Anpassungs-Engines von Drittanbietern verwendet.

Value Table

Verwandte Themen