Raster projizieren (Datenmanagement)

Zusammenfassung

Transformiert ein Raster-Dataset aus einem Koordinatensystem in ein anderes.

Weitere Informationen zur Funktionsweise von Raster projizieren

Verwendung

  • Das Koordinatensystem definiert, wie Rasterdaten projiziert werden. Sie können dasselbe Koordinatensystem für Ihre Daten verwenden, sodass sich alle Daten in derselben Projektion befinden.

  • Ein Raster-Dataset wird in einen neuen Raumbezug mit einer auf bilinearer Interpolation beruhenden Näherungsmethode projiziert, bei der Pixel auf ein grobes Gitternetz projiziert werden und zwischen den Pixeln eine bilineare Interpolation verwendet wird.

  • Mit diesem Werkzeug wird sichergestellt, dass der Fehlerbereich weniger als einen halben Pixel beträgt.

  • Um die Transformation anzuwenden, ohne eine Datei zu erstellen, verwenden Sie das Werkzeug Entzerren.

  • Sie können einen bereits vorhandenen Raumbezug auswählen, einen Raumbezug aus einem anderen Dataset importieren oder einen Raumbezug erstellen.

  • Dieses Werkzeug kann nur eine quadratische Pixelgröße ausgeben.

  • Sie können die Ausgabe in den Formaten BIL, BIP, BMP, BSQ, DAT, Esri Grid, GIF, IMG, JPEG, JPEG 2000, PNG, TIFF, MRF, CRF oder einem beliebigen Geodatabase-Raster-Dataset speichern.

  • Beim Speichern eines Raster-Datasets in einer JPEG-Datei, einer JPEG 2000-Datei oder einer Geodatabase können Sie in den Geoverarbeitungsumgebungen Werte für Komprimierungstyp und Komprimierungsqualität festlegen.

  • Die Option Nächster, die ein Nächster-Nachbar-Resampling durchführt, ist die schnellste der vier Interpolationsmethoden. Sie wird vorwiegend für Kategoriedaten verwendet (beispielsweise eine Klassifizierung nach Land Use), da die Pixelwerte damit nicht geändert werden. Diese Option sollte nicht für kontinuierliche Daten wie Höhenoberflächen verwendet werden.

  • Bei der Option Bilinear wird der neue Wert eines Pixels mit bilinearer Interpolation aus dem gewichteten Entfernungsdurchschnitt der vier nächstgelegenen umgebenden Pixel bestimmt. Bei der Option Kubisch wird der neue Pixelwert mittels kubischer Faltung bestimmt, indem eine geglättete Kurve durch die umliegenden Punkte angepasst wird. Dies sind geeignete Optionen für kontinuierliche Daten, sie bewirken jedoch eine Glättung. Kubische Faltung kann dazu führen, dass das Ausgabe-Raster Werte enthält, die außerhalb des Bereichs des Eingabe-Rasters liegen. Verwenden Sie keine dieser Optionen für Kategoriedaten, da es zur Entstehung von unterschiedlichen Pixelwerten kommen kann, was nicht erwünscht ist.

  • Die Zellen eines Raster-Datasets sind quadratisch und flächengleich im Karten-Koordinatenbereich. Die Form und die Fläche einer Zelle auf der Erdoberfläche sind jedoch nie konstant über ein Raster verteilt. Dies liegt daran, dass keine Kartenprojektion Form und Fläche gleichzeitig beibehalten kann. Die von den Zellen dargestellte Fläche ändert sich über das Raster hinweg. Aus diesem Grund können sich die Zellengröße und die Anzahl der Zeilen und Spalten im Ausgabe-Raster ändern.

  • Geben Sie stets eine Ausgabezellengröße an, wenn Sie nicht zwischen sphäroidischen Koordinaten (Breite/Länge) und einem planaren Koordinatensystem projizieren und die passende Zellengröße nicht kennen.

  • Die Standardzellengröße des Ausgabe-Rasters wird von der projizierten Zellengröße in der Mitte des Ausgabe-Rasters bestimmt. Dies ist in der Regel auch die Schnittstelle zwischen dem Mittelmeridian und dem Breitengrad im tatsächlichen Maßstab sowie der Bereich mit der geringsten Verzerrung. Die Grenze des Eingabe-Rasters wird projiziert und die minimalen und maximalen Ausdehnungen bestimmen die Größe des Ausgabe-Rasters. Jede Zelle wird zurück in das Eingabe-Koordinatensystem projiziert, um den Zellenwert zu ermitteln.

  • Die geographische Transformation ist ein optionaler Parameter, wenn das Eingabe- und das Ausgabe-Koordinatensystem über dasselbe Datum verfügen. Wenn Eingabe- und Ausgabedatum unterschiedlich sind, muss eine geographische Transformation angegeben werden.

  • Der Registrierungspunkt ermöglicht Ihnen, den Ursprungspunkt zur Verankerung der Ausgabezellen anzugeben. Alle Ausgabezellen liegen im Abstand der Zellengröße entfernt von diesem Punkt. Dieser Punkt muss keine Eckkoordinate sein oder innerhalb des Raster-Datasets liegen. Wenn in den Umgebungseinstellungen ein Fang-Raster festgelegt ist, wird der Registrierungspunkt ignoriert.

  • Als Standardsphäroid wird "CLARKE 1866" verwendet, wenn dieser nicht in der Projektion selbst vorgegeben ist (z. B. NEWZEALAND_GRID) oder mit dem Unterbefehl "SPHEROID" angegeben wurde.

  • Die Fang-Raster-Einstellung hat Vorrang vor dem Registrierungspunkt, falls beides festgelegt ist.

  • Um eine vertikale Transformation durchzuführen, aktivieren Sie im Dialogfeld den optionalen Parameter Vertikal. Der Parameter Vertikal ist standardmäßig nicht verfügbar und ist nur dann verfügbar, wenn die Eingabe- und Ausgabe-Koordinatensysteme über ein vertikales Koordinatensystem (VCS) verfügen und die Koordinaten der Eingabe-Feature-Class Z-Werte aufweisen. Außerdem muss ein zusätzliches Installationsprogramm für Daten (Koordinatensystemdaten) im System installiert werden.

    Wenn Sie das Ausgabe-Koordinatensystem auswählen, können Sie das geographische oder das projizierte Koordinatensystem sowie ein vertikales Koordinatensystem (VCS) auswählen. Wenn sich die vertikalen Eingabe- und Ausgabe-Koordinatensysteme (VCS) unterscheiden, sind eine geeignete vertikale und eine optionale geographische (Datums-) Transformation verfügbar. Wenn eine Transformation in entgegengesetzter Richtung zu seiner Definition angewendet werden soll, wählen Sie den Eintrag mit der Tilde (~) vor dem Namen.

Parameter

BeschriftungErläuterungDatentyp
Eingabe-Raster

Das Raster-Dataset wird in eine neue Projektion transformiert.

Mosaic Layer; Raster Layer
Ausgabe-Raster-Dataset

Das Raster-Dataset mit der neuen Projektion, die erstellt wird.

Wenn Sie das Raster-Dataset in einem Dateiformat speichern, geben Sie die Dateierweiterung folgendermaßen an:

  • .bil: Esri BIL
  • .bip: Esri BIP
  • .bmp: BMP
  • .bsq: Esri BSQ
  • .dat: ENVI DAT
  • .gif: GIF
  • .img: ERDAS IMAGINE
  • .jpg: JPEG
  • .jp2: JPEG 2000
  • .png: PNG
  • .tif: TIFF
  • .mrf: MRF
  • .crf: CRF
  • Keine Erweiterung für Esri Grid

Fügen Sie beim Speichern eines Raster-Datasets in einer Geodatabase dem Namen des Raster-Datasets keine Dateierweiterung hinzu.

Beim Speichern eines Raster-Datasets in einer JPEG-Datei, einer JPEG 2000-Datei, einer TIFF-Datei oder einer Geodatabase können Sie in den Geoverarbeitungsumgebungen Werte für Komprimierungstyp und Komprimierungsqualität festlegen.

Raster Dataset
Ausgabe-Koordinatensystem

Das Koordinatensystem des neuen Raster-Datasets.

Coordinate System
Resampling-Methode
(optional)

Gibt die verwendete Resampling-Methode an. Die Standardeinstellung ist Nächster.

Die Optionen Nächster und Mehrheit werden für Kategoriedaten verwendet, z. B. für eine Klassifizierung der Landnutzung. Die Standardeinstellung ist die Option Nächster. Dies ist die schnellste Methode. Die Pixelwerte werden nicht verändert. Verwenden Sie diese Optionen nicht für kontinuierliche Daten wie Höhenoberflächen.

Die Optionen Bilinear und Kubisch eignen sich am besten für kontinuierliche Daten. Keine dieser Optionen sollte für Kategoriedaten verwendet werden, da die Pixelwerte unter Umständen geändert werden.

  • Nächster NachbarEs wird die Methode "Nächster Nachbar" verwendet. Dabei werden Änderungen an Pixelwerten minimiert, da keine neuen Werte erstellt werden. Dies ist die schnellste Resampling-Methode. Diese Funktion ist für diskontinuierliche Daten wie Landnutzung geeignet.
  • Bilineare InterpolationEs wird die Methode "Bilineare Interpolation" verwendet. Der Wert jedes Pixels wird berechnet, indem der Durchschnittswert (gewichtet für Entfernung) der Werte der umgebenden 4 Pixel berechnet wird. Diese Funktion ist für kontinuierliche Daten geeignet.
  • Kubische FaltungEs wird die Methode "Kubische Faltung" verwendet. Berechnet den Wert jedes Pixels, indem eine geglättete Kurve durch die umgebenden 16 Pixel angepasst wird. Hierdurch kann das glatteste Bild erzeugt werden, es lassen sich aber auch Werte außerhalb des Bereichs in den Quelldaten erstellen. Diese Funktion ist für kontinuierliche Daten geeignet.
  • Majority-ResamplingEs wird die Methode "Mehrheit" verwendet. Damit wird der Wert jedes Pixels auf Grundlage des am meisten verbreiteten Wertes innerhalb eines 4-mal-4-Fensters festgelegt. Diese Funktion ist für diskontinuierliche Daten geeignet.
String
Ausgabe-Zellengröße
(optional)

Die Zellengröße des neuen Rasters, das ein vorhandenes Raster-Dataset oder die Angabe seiner Breite (x) und Höhe (y) verwendet.

Cell Size XY
Geographische Transformation
(optional)

Die geographische Transformation, die beim Projizieren aus einem geographischen System oder Datum in ein anderes verwendet wird. Eine Transformation ist erforderlich, wenn das Eingabe- und das Ausgabe-Koordinatensystem unterschiedliche Datumsangaben aufweisen.

String
Registrierungspunkt
(optional)

Der Punkt links unten für die Verankerung der Ausgabezellen. Dieser Punkt muss keine Eckkoordinate sein oder innerhalb des Raster-Datasets liegen.

Die Umgebungseinstellung Fang-Raster hat Vorrang vor dem Parameter Registrierungspunkt. Um mit dem Registrierungspunkt zu arbeiten, müssen Sie sicherstellen, dass kein Fang-Raster festgelegt ist.

Point
Eingabe-Koordinatensystem
(optional)

Das Koordinatensystem des Eingabe-Raster-Datasets.

Coordinate System
Vertikal
(optional)

Gibt an, ob eine vertikale Transformation angewendet wird.

Diese Option ist aktiv, wenn die Eingabe- und Ausgabekoordinatensysteme über ein vertikales Koordinatensystem verfügen und die Koordinaten des Eingabe-Rasters Z-Werte aufweisen.

Wenn Vertikal aktiviert ist, kann der Parameter Geographische Transformation Ellipsoid-Transformationen und Transformationen zwischen vertikalen Daten enthalten. ~NAD_1983_To_NAVD88_CONUS_GEOID12B_Height + NAD_1983_To_WGS_1984_1 transformiert beispielsweise Geometriestützpunkte, die mit dem Datum "NAD 1983" und den Höhen "NAVD 1988" definiert wurden, in Stützpunkte des Ellipsoids "WGS 1984" (mit Z-Werten, die Ellipsoid-Höhen darstellen). Die Tilde (~) gibt die umgekehrte Richtung der Transformation an.

  • Deaktiviert: Es wird keine vertikale Transformation angewendet. Die Z-Werte von Geometriekoordinaten werden ignoriert, und die Z-Werte werden nicht geändert. Dies ist die Standardeinstellung.
  • Aktiviert: Die im Parameter Geographische Transformation angegebene Transformation wird angewendet. Das Werkzeug Raster projizieren transformiert X-, Y- und Z-Werte von Geometriekoordinaten.

Für viele vertikale Transformationen sind zusätzliche Datendateien erforderlich, die mit dem Installationspaket für ArcGIS-Koordinatensystemdaten installiert werden müssen.

Boolean

arcpy.management.ProjectRaster(in_raster, out_raster, out_coor_system, {resampling_type}, {cell_size}, {geographic_transform}, {Registration_Point}, {in_coor_system}, {vertical})
NameErläuterungDatentyp
in_raster

Das Raster-Dataset wird in eine neue Projektion transformiert.

Mosaic Layer; Raster Layer
out_raster

Das Raster-Dataset mit der neuen Projektion, die erstellt wird.

Wenn Sie das Raster-Dataset in einem Dateiformat speichern, geben Sie die Dateierweiterung folgendermaßen an:

  • .bil: Esri BIL
  • .bip: Esri BIP
  • .bmp: BMP
  • .bsq: Esri BSQ
  • .dat: ENVI DAT
  • .gif: GIF
  • .img: ERDAS IMAGINE
  • .jpg: JPEG
  • .jp2: JPEG 2000
  • .png: PNG
  • .tif: TIFF
  • .mrf: MRF
  • .crf: CRF
  • Keine Erweiterung für Esri Grid

Fügen Sie beim Speichern eines Raster-Datasets in einer Geodatabase dem Namen des Raster-Datasets keine Dateierweiterung hinzu.

Beim Speichern eines Raster-Datasets in einer JPEG-Datei, einer JPEG 2000-Datei, einer TIFF-Datei oder einer Geodatabase können Sie in den Geoverarbeitungsumgebungen Werte für Komprimierungstyp und Komprimierungsqualität festlegen.

Raster Dataset
out_coor_system

Das Koordinatensystem des neuen Raster-Datasets.

Folgende Werte sind für diesen Parameter gültig:

  • Eine vorhandene Feature-Class, ein Feature-Dataset, ein Raster-Dataset (im Grunde ein beliebiges Element mit einem Koordinatensystem)
  • Ein ArcPy SpatialReference-Objekt

Coordinate System
resampling_type
(optional)

Gibt die verwendete Resampling-Methode an. Die Standardeinstellung ist Nächster.

  • NEARESTEs wird die Methode "Nächster Nachbar" verwendet. Dabei werden Änderungen an Pixelwerten minimiert, da keine neuen Werte erstellt werden. Dies ist die schnellste Resampling-Methode. Diese Funktion ist für diskontinuierliche Daten wie Landnutzung geeignet.
  • BILINEAREs wird die Methode "Bilineare Interpolation" verwendet. Der Wert jedes Pixels wird berechnet, indem der Durchschnittswert (gewichtet für Entfernung) der Werte der umgebenden 4 Pixel berechnet wird. Diese Funktion ist für kontinuierliche Daten geeignet.
  • CUBICEs wird die Methode "Kubische Faltung" verwendet. Berechnet den Wert jedes Pixels, indem eine geglättete Kurve durch die umgebenden 16 Pixel angepasst wird. Hierdurch kann das glatteste Bild erzeugt werden, es lassen sich aber auch Werte außerhalb des Bereichs in den Quelldaten erstellen. Diese Funktion ist für kontinuierliche Daten geeignet.
  • MAJORITYEs wird die Methode "Mehrheit" verwendet. Damit wird der Wert jedes Pixels auf Grundlage des am meisten verbreiteten Wertes innerhalb eines 4-mal-4-Fensters festgelegt. Diese Funktion ist für diskontinuierliche Daten geeignet.

Die Optionen Nächster und Mehrheit werden für Kategoriedaten verwendet, z. B. für eine Klassifizierung der Landnutzung. Die Standardeinstellung ist die Option Nächster. Dies ist die schnellste Methode. Die Pixelwerte werden nicht verändert. Verwenden Sie diese Optionen nicht für kontinuierliche Daten wie Höhenoberflächen.

Die Optionen Bilinear und Kubisch eignen sich am besten für kontinuierliche Daten. Keine dieser Optionen sollte für Kategoriedaten verwendet werden, da die Pixelwerte unter Umständen geändert werden.

String
cell_size
(optional)

Die Zellengröße des neuen Rasters, das ein vorhandenes Raster-Dataset oder die Angabe seiner Breite (x) und Höhe (y) verwendet.

Cell Size XY
geographic_transform
[geographic_transform,...]
(optional)

Die geographische Transformation, die beim Projizieren aus einem geographischen System oder Datum in ein anderes verwendet wird. Eine Transformation ist erforderlich, wenn das Eingabe- und das Ausgabe-Koordinatensystem unterschiedliche Datumsangaben aufweisen.

String
Registration_Point
(optional)

Der Punkt links unten für die Verankerung der Ausgabezellen. Dieser Punkt muss keine Eckkoordinate sein oder innerhalb des Raster-Datasets liegen.

Die Umgebungseinstellung Fang-Raster hat Vorrang vor dem Parameter Registrierungspunkt. Um mit dem Registrierungspunkt zu arbeiten, müssen Sie sicherstellen, dass kein Fang-Raster festgelegt ist.

Point
in_coor_system
(optional)

Das Koordinatensystem des Eingabe-Raster-Datasets.

Coordinate System
vertical
(optional)

Gibt an, ob eine vertikale Transformation durchgeführt wird.

Dieser Parameter wird nur dann aktiviert, wenn die Eingabe- und Ausgabekoordinatensysteme über ein vertikales Koordinatensystem verfügen und die Koordinaten der Eingabe-Feature-Class Z-Werte aufweisen.

Wenn das Schlüsselwort VERTICAL verwendet wird, kann der Parameter geographic_transform Ellipsoid-Transformationen und Transformationen zwischen vertikalen Daten enthalten. "~NAD_1983_To_NAVD88_CONUS_GEOID12B_Height + NAD_1983_To_WGS_1984_1" transformiert beispielsweise Geometriestützpunkte, die mit dem Datum "NAD 1983" und den Höhen "NAVD 1988" in Stützpunkte des Ellipsoids "WGS 1984" (mit Z-Werten, die Ellipsoid-Höhen darstellen) definiert wurden. Die Tilde (~) gibt die umgekehrte Richtung der Transformation an.

  • NO_VERTICALEs wird keine vertikale Transformation angewendet. Die Z-Werte von Geometriekoordinaten werden ignoriert, und die Z-Werte werden nicht geändert. Dies ist die Standardeinstellung.
  • VERTICALDie im Parameter geographic_transform angegebene Transformation wird angewendet. Das Werkzeug Raster projizieren transformiert X-, Y- und Z-Werte von Geometriekoordinaten.

Für viele vertikale Transformationen sind zusätzliche Datendateien erforderlich, die mit dem Installationspaket für ArcGIS-Koordinatensystemdaten installiert werden müssen.

Boolean

Codebeispiel

ProjectRaster - Beispiel 1 (Python-Fenster)

Dies ist ein Python-Beispiel für das Werkzeug ProjectRaster.

import arcpy
from arcpy import env
arcpy.ProjectRaster_management("c:/data/image.tif", "c:/output/reproject.tif",\
                               "World_Mercator.prj", "BILINEAR", "5",\
                               "NAD_1983_To_WGS_1984_5", "#", "#")
ProjectRaster - Beispiel 2 (eigenständiges Skript)

Dies ist ein Python-Skriptbeispiel für das Werkzeug ProjectRaster.

##====================================
##Project Raster
##Usage: ProjectRaster_management in_raster out_raster out_coor_system {NEAREST | BILINEAR 
##                                | CUBIC | MAJORITY} {cell_size} {geographic_transform;
##                                geographic_transform...} {Registration_Point} {in_coor_system}
    
import arcpy

arcpy.env.workspace = r"C:/Workspace"

##Reproject a TIFF image with Datumn transfer
arcpy.ProjectRaster_management("image.tif", "reproject.tif", "World_Mercator.prj",\
                               "BILINEAR", "5", "NAD_1983_To_WGS_1984_5", "#", "#")

##Reproject a TIFF image that does not have a spatial reference
##Set snapping point to the top left of the original image
snapping_pnt = "1942602 304176"

arcpy.ProjectRaster_management("nosr.tif", "project.tif", "World_Mercator.prj", "BILINEAR",\
                               "5", "NAD_1983_To_WGS_1984_6", snapping_pnt,\
                               "NAD_1983_StatePlane_Washington_North.prj")