Pixel mit Deep Learning klassifizieren (Image Analyst)

Mit der Image Analyst-Lizenz verfügbar.

Zusammenfassung

Führt ein trainiertes Deep-Learning-Modell auf einem Eingabe-Raster zur Erstellung eines klassifizierten Rasters aus, wobei jedem gültigen Pixel eine Klassenbeschriftung zugewiesen ist.

Dieses Werkzeug erfordert eine Modelldefinitionsdatei, die Informationen zum trainierten Modell enthält. Das Modell kann mit dem Werkzeug Deep-Learning-Modell trainieren oder einer Training-Software von Drittanbietern wie TensorFlow, PyTorch oder Keras trainiert werden. Bei der Modelldefinitionsdatei kann es sich um eine Esri Modelldefinitionsdatei als JSON (.emd) oder ein Deep-Learning-Modellpaket handeln. Sie muss den Pfad zur Python-Raster-Funktion, die zur Verarbeitung der einzelnen Objekte aufgerufen werden soll, sowie den Pfad zur binären Datei des trainierten Deep-Learning-Modells enthalten.

Verwendung

  • Sie müssen die dem jeweiligen Deep-Learning-Framework entsprechende Python-API (z. B. TensorFlow oder PyTorch) in der Python-Umgebung von AllSource installieren, da sonst beim Hinzufügen der Esri Modelldefinitionsdatei zum Werkzeug ein Fehler auftritt. Fordern Sie die entsprechenden Framework-Informationen vom Ersteller der Esri Model Definition-Datei an.

    Informationen zum Einrichten des Computers für Deep-Learning-Frameworks in AllSource finden Sie unter Installieren von Deep-Learning-Frameworks for ArcGIS.

  • Mit diesem Werkzeug wird eine Deep-Learning-Python-API eines Drittanbieters (wie TensorFlow, PyTorch oder Keras) aufgerufen und die angegebene Python-Raster-Funktion zum Verarbeiten der einzelnen Objekte verwendet.

  • Beispielanwendungsfälle für dieses Werkzeug finden Sie auf der Esri GitHub-Seite zu Python-Raster-Funktionen. Sie können auch benutzerdefinierte Python-Module entwickeln, indem Sie den Beispielen und Anweisungen im Github-Repository folgen.

  • Bei dem Parameterwert für die Modelldefinition kann es sich um eine Esri Modelldefinitionsdatei als JSON (.emd), eine JSON-Zeichenfolge oder ein Deep-Learning-Modellpaket (.dlpk) handeln. Eine JSON-Zeichenfolge ist nützlich, wenn Sie dieses Werkzeug auf dem Server verwenden, sodass Sie die JSON-Zeichenfolge einfügen können, statt die .emd-Datei hochzuladen. Die .dlpk-Datei muss lokal gespeichert werden.

  • Weitere Informationen zu Deep Learning finden Sie unter Deep Learning in AllSource.

  • Im folgenden Codebeispiel wird die Datei der Esri Modelldefinition (.emd) verwendet:

    {
        "Framework":"TensorFlow",
        "ModelConfiguration":"deeplab",
    
        "ModelFile":"\\Data\\ImgClassification\\TF\\froz_inf_graph.pb",
        "ModelType":"ImageClassification",
        "ExtractBands":[0,1,2],
        "ImageHeight":513,
        "ImageWidth":513,
    
        "Classes" : [
            {
                "Value":0,
                "Name":"Evergreen Forest",
                "Color":[0, 51, 0]
             },
             {
                "Value":1,
                "Name":"Grassland/Herbaceous",
                "Color":[241, 185, 137]
             },
             {
                "Value":2,
                "Name":"Bare Land",
                "Color":[236, 236, 0]
             },
             {
                "Value":3,
                "Name":"Open Water",
                "Color":[0, 0, 117]
             },
             {
                "Value":4,
                "Name":"Scrub/Shrub",
                "Color":[102, 102, 0]
             },
             {
                "Value":5,
                "Name":"Impervious Surface",
                "Color":[236, 236, 236]
             }
        ]
    }
  • Bei dem Eingabe-Raster kann es sich um ein einzelnes Raster, mehrere Raster oder eine Feature-Class mit angehängten Bildern handeln. Weitere Informationen zu Anlagen finden Sie unter Hinzufügen oder Entfernen von Dateianlagen.

  • Durch Vergrößern der Batch-Größe kann die Performance des Werkzeugs verbessert werden; mit zunehmender Batch-Größe erhöht sich jedoch auch der Speicherbedarf. Wenn ein Fehler vom Typ "Nicht genügend Arbeitsspeicher" auftritt, verwenden Sie eine kleinere Batch-Größe. Der Wert batch_size kann mithilfe des Parameters Argumente angepasst werden.

  • Batch-Größen sind Quadratzahlen wie 1, 4, 9, 16, 25, 64 usw. Wenn der Eingabewert keine perfekte Quadratzahl ist, wird der höchstmögliche Quadratwert verwendet. Wird beispielsweise der Wert 6 angegeben, wird die Batch-Größe auf den Wert 4 festgelegt.

  • Weitere Informationen zu den Voraussetzungen für die Ausführung dieses Werkzeugs und eventuell dabei auftretenden Problemen finden Sie unter Häufig gestellte Fragen zu Deep Learning.

Parameter

BeschriftungErläuterungDatentyp
Eingabe-Raster

Das Eingabe-Raster-Dataset, das klassifiziert wird.

Bei der Eingabe kann es sich um ein oder mehrere Raster in einem Mosaik-Dataset, einen Image-Service, einen Bildordner oder eine Feature-Class mit Bildanlagen handeln.

Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer; Folder; Feature Layer; Feature Class
Modelldefinition

Bei dem Parameterwert für die Modelldefinition kann es sich um eine Esri Modelldefinitionsdatei als JSON (.emd), eine JSON-Zeichenfolge oder ein Deep-Learning-Modellpaket (.dlpk) handeln. Eine JSON-Zeichenfolge ist nützlich, wenn Sie dieses Werkzeug auf dem Server verwenden, sodass Sie die JSON-Zeichenfolge einfügen können, statt die .emd-Datei hochzuladen. Die .dlpk-Datei muss lokal gespeichert werden.

Sie enthält den Pfad zur binären Datei des Deep-Learning-Modells, den Pfad zu der zu verwendenden Python-Raster-Funktion sowie andere Parameter wie etwa die bevorzugte Kachelgröße oder den bevorzugten Abstand.

File; String
Argumente
(optional)

Die Funktionsargumente werden in der Python-Raster-Funktionsklasse definiert. Hier geben Sie zusätzliche Deep-Learning-Parameter und Argumente für Experimente und Verfeinerungen wie den Konfidenzschwellenwert zur Anpassung der Empfindlichkeit an. Die Namen der Argumente werden durch Lesen des Python-Moduls aufgefüllt.

Value Table
Verarbeitungsmodus

Legt fest, wie alle Raster-Elemente in einem Mosaik-Dataset oder Image-Service verarbeitet werden. Dieser Parameter findet Anwendung, wenn es sich beim Eingabe-Raster um ein Mosaik-Dataset oder einen Image-Service handelt.

  • Als mosaikiertes Bild verarbeitenAlle Raster-Elemente im Mosaik-Dataset oder Image-Service werden zusammen mosaikiert und verarbeitet. Dies ist die Standardeinstellung.
  • Alle Raster-Elemente separat verarbeitenAlle Raster-Elemente im Mosaik-Dataset oder Image-Service werden als separate Bilder verarbeitet.
String
Ausgabeordner
(optional)

Der Ordner, in dem die klassifizierten Ausgabe-Raster gespeichert werden. Anhand der klassifizierten Raster in diesem Ordner wird ein Mosaik-Dataset erstellt.

Dieser Parameter ist erforderlich, wenn es sich bei dem Eingabe-Raster um einen Ordner mit Bildern oder ein Mosaik-Dataset handelt, in dem alle Elemente einzeln verarbeitet werden müssen. Als Standard wird ein Ordner im Projektordner verwendet.

Folder
Ausgabe-Features
(optional)

Die Feature-Class, in der die klassifizierten Ausgabe-Raster gespeichert werden.

Dieser Parameter ist erforderlich, wenn es sich bei dem Eingabe-Raster um eine Feature-Class mit Bildern handelt.

Feature Class

Rückgabewert

BeschriftungErläuterungDatentyp
Ausgabe-Raster-Dataset

Der Name des Rasters oder Mosaik-Datasets mit dem Ergebnis.

Raster Dataset

ClassifyPixelsUsingDeepLearning(in_raster, in_model_definition, {arguments}, processing_mode, {out_classified_folder}, {out_featureclass})
NameErläuterungDatentyp
in_raster

Das Eingabe-Raster-Dataset, das klassifiziert wird.

Bei der Eingabe kann es sich um ein oder mehrere Raster in einem Mosaik-Dataset, einen Image-Service, einen Bildordner oder eine Feature-Class mit Bildanlagen handeln.

Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer; Folder; Feature Layer; Feature Class
in_model_definition

Beim Parameterwert in_model_definition kann es sich um eineEsri Modelldefinitionsdatei als JSON (.emd), eine JSON-Zeichenfolge oder ein Deep-Learning-Modellpaket (.dlpk) handeln. Eine JSON-Zeichenfolge ist nützlich, wenn Sie dieses Werkzeug auf dem Server verwenden, sodass Sie die JSON-Zeichenfolge einfügen können, statt die .emd-Datei hochzuladen. Die .dlpk-Datei muss lokal gespeichert werden.

Sie enthält den Pfad zur binären Datei des Deep-Learning-Modells, den Pfad zu der zu verwendenden Python-Raster-Funktion sowie andere Parameter wie etwa die bevorzugte Kachelgröße oder den bevorzugten Abstand.

File; String
arguments
[arguments,...]
(optional)

Die Funktionsargumente werden in der Python-Raster-Funktionsklasse definiert. Hier geben Sie zusätzliche Deep-Learning-Parameter und Argumente für Experimente und Verfeinerungen wie den Konfidenzschwellenwert zur Anpassung der Empfindlichkeit an. Die Namen der Argumente werden durch Lesen des Python-Moduls aufgefüllt.

Value Table
processing_mode

Legt fest, wie alle Raster-Elemente in einem Mosaik-Dataset oder Image-Service verarbeitet werden. Dieser Parameter findet Anwendung, wenn es sich beim Eingabe-Raster um ein Mosaik-Dataset oder einen Image-Service handelt.

  • PROCESS_AS_MOSAICKED_IMAGEAlle Raster-Elemente im Mosaik-Dataset oder Image-Service werden zusammen mosaikiert und verarbeitet. Dies ist die Standardeinstellung.
  • PROCESS_ITEMS_SEPARATELYAlle Raster-Elemente im Mosaik-Dataset oder Image-Service werden als separate Bilder verarbeitet.
String
out_classified_folder
(optional)

Der Ordner, in dem die klassifizierten Ausgabe-Raster gespeichert werden. Anhand der klassifizierten Raster in diesem Ordner wird ein Mosaik-Dataset erstellt.

Dieser Parameter ist erforderlich, wenn es sich bei dem Eingabe-Raster um einen Ordner mit Bildern oder ein Mosaik-Dataset handelt, in dem alle Elemente einzeln verarbeitet werden müssen. Als Standard wird ein Ordner im Projektordner verwendet.

Folder
out_featureclass
(optional)

Die Feature-Class, in der die klassifizierten Ausgabe-Raster gespeichert werden.

Dieser Parameter ist erforderlich, wenn es sich bei dem Eingabe-Raster um eine Feature-Class mit Bildern handelt.

Feature Class

Rückgabewert

NameErläuterungDatentyp
out_classified_raster

Der Name des Rasters oder Mosaik-Datasets mit dem Ergebnis.

Raster Dataset

Codebeispiel

ClassifyPixelsUsingDeepLearning: Beispiel 1 (Python-Fenster)

In diesem Beispiel wird ein Raster basierend auf einer benutzerdefinierten Pixel-Klassifizierung mithilfe der Funktion ClassifyPixelsUsingDeepLearning klassifiziert.

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

ClassifyPixelsUsingDeepLearning("c:/classifydata/moncton_seg.tif",
     "c:/classifydata/moncton.tif", "c:/classifydata/moncton_sig.emd")
ClassifyPixelsUsingDeepLearning: Beispiel 2 (eigenständiges Skript)

In diesem Beispiel wird ein Raster basierend auf einer benutzerdefinierten Pixel-Klassifizierung mithilfe der Funktion ClassifyPixelsUsingDeepLearning klassifiziert.

# Import system modules
import arcpy
from arcpy.ia import *


# Set local variables
in_raster = "c:\\classifydata\\moncton_seg.tif"
in_model_definition = "c:\\classifydata\\moncton_sig.emd"
model_arguments = "padding 0; batch_size 16"
processing_mode = "PROCESS_AS_MOSAICKED_IMAGE"

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

# Execute 
Out_classified_raster = ClassifyPixelsUsingDeepLearning(in_raster, 
                   in_model_definition, model_arguments, processing_mode)
Out_classified_raster.save("c:\\classifydata\\classified_moncton.tif")